Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Biological and Chemical Physics

Float Like A Butterfly, Sting Like A Bee!, Kobe D. Rome Apr 2024

Float Like A Butterfly, Sting Like A Bee!, Kobe D. Rome

SACAD: John Heinrichs Scholarly and Creative Activity Days

By injecting an electron into the empty pie* molecular orbital (LUMO) of Amino Acids in gas phase, we measure the Vertical Attachment Energies (VAEs) for the formation of short-lived anion states of these species using electron transmission spectroscopy (ETS). Our ETS study, a first of its kind to measure the VAE for the simplest of proteins, Glycine-Glycine (Gly-Gly), is currently in progress. Based on our previous measurements for several Amino Acids including Glycine, we expect a common range of attachment energy (1.50 – 2.00 eV) for Gly-Gly.


Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom Jan 2021

Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom

Physics Faculty Publications

Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1-2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200-240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration …


Universality Of Quantum Information In Chaotic Cfts, Nima Lashkari, Anatoly Dymarsky, Hong Liu Mar 2018

Universality Of Quantum Information In Chaotic Cfts, Nima Lashkari, Anatoly Dymarsky, Hong Liu

Physics and Astronomy Faculty Publications

We study the Eigenstate Thermalization Hypothesis (ETH) in chaotic conformal field theories (CFTs) of arbitrary dimensions. Assuming local ETH, we compute the reduced density matrix of a ball-shaped subsystem of finite size in the infinite volume limit when the full system is an energy eigenstate. This reduced density matrix is close in trace distance to a density matrix, to which we refer as the ETH density matrix, that is independent of all the details of an eigenstate except its energy and charges under global symmetries. In two dimensions, the ETH density matrix is universal for all theories with the …


Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams Nov 2015

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams

Faculty Scholarship

Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary—but not sufficient—for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae …


Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker Jan 2015

Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker

Faculty Scholarship

The article discusses the concept behind motion of a charged particle in a non-uniform filed of a wire carrying current. Topics discussed include possible types of motion in a current carrying field, vector analysis of velocity and magnetic field of the particle and Coupled differential equations.


A Numerical Assessment Of Cosmic-Ray Energy Diffusion Through Turbulent Media, M. Fatuzzo, F. Melia Jan 2014

A Numerical Assessment Of Cosmic-Ray Energy Diffusion Through Turbulent Media, M. Fatuzzo, F. Melia

Faculty Scholarship

No abstract provided.


Effects Of Turbulence On Cosmic Ray Propagation In Protostars And Young Stars, M. Fatuzzo, F. C. Adams Jan 2014

Effects Of Turbulence On Cosmic Ray Propagation In Protostars And Young Stars, M. Fatuzzo, F. C. Adams

Faculty Scholarship

No abstract provided.


Assessing The Feasibility Of Cosmic-Ray Acceleration By Magnetic Turbulence At The Magnetic Center, M. Fatuzzo, F. Melia Jan 2012

Assessing The Feasibility Of Cosmic-Ray Acceleration By Magnetic Turbulence At The Magnetic Center, M. Fatuzzo, F. Melia

Faculty Scholarship

No abstract provided.


Quantitative Study Of Spin-Flip Co-Tunneling Transport In A Quantum Dot, S. Herbert, T-M. Liu, A. N. Ngo Jan 2012

Quantitative Study Of Spin-Flip Co-Tunneling Transport In A Quantum Dot, S. Herbert, T-M. Liu, A. N. Ngo

Faculty Scholarship

No abstract provided.


Near-Edge X-Ray Absorption Fine Structure Study Of Ion-Beam-Induced Phase Transformation In Gd2(Ti1-Yzry)2o7, Ponnusamy Nachimuthu, S. Thevuthasan, V. Shutthanandan, E. M. Adams, W. J. Weber, B. D. Begg, D. K. Shuh, Dennis W. Lindle, Eric M. Gullikson, Rupert C. Perera Jan 2005

Near-Edge X-Ray Absorption Fine Structure Study Of Ion-Beam-Induced Phase Transformation In Gd2(Ti1-Yzry)2o7, Ponnusamy Nachimuthu, S. Thevuthasan, V. Shutthanandan, E. M. Adams, W. J. Weber, B. D. Begg, D. K. Shuh, Dennis W. Lindle, Eric M. Gullikson, Rupert C. Perera

Chemistry and Biochemistry Faculty Research

The structural and electronic properties of Gd2(Ti1−yZry)2O7 (y=0–1) pyrochlores following a 2.0-MeV Au2+ ion-beam irradiation (~5.0 X 1014 Au2+/cm2) have been investigated by Ti 2p and O 1s near-edge x-ray absorption fine structure (NEXAFS). The irradiation of Gd2(Ti1−yZry)2O7 leads to the phase transformation from the ordered pyrochlore structure (Fd3m) to the defect fluorite structure (Fm3m) regardless of Zr concentration. Irradiated Gd2(Ti1−y …


Probing Cation Antisite Disorder In Gd2ti2o7 Pyrochlore By Site-Specific Nexafs And Xps, Ponnusamy Nachimuthu, S. Thevuthasan, Mark H. Engelhard, W. J. Weber, D. K. Shuh, N. M. Hamdan, B. S. Mun, E. M. Adams, D. E. Mccready, V. Shutthanandan, Dennis W. Lindle, G. Balakrishnan, R. C. Ewing Sep 2004

Probing Cation Antisite Disorder In Gd2ti2o7 Pyrochlore By Site-Specific Nexafs And Xps, Ponnusamy Nachimuthu, S. Thevuthasan, Mark H. Engelhard, W. J. Weber, D. K. Shuh, N. M. Hamdan, B. S. Mun, E. M. Adams, D. E. Mccready, V. Shutthanandan, Dennis W. Lindle, G. Balakrishnan, R. C. Ewing

Chemistry and Biochemistry Faculty Research

Disorder in Gd2Ti2O7 is investigated by near-edge x-ray-absorption fine structure (NEXAFS) and x-ray photoelectron spectroscopy (XPS). NEXAFS shows Ti4+ ions occupy octahedral sites with a tetragonal distortion induced by vacant oxygen sites. O 1s XPS spectra obtained with a charge neutralization system from Gd2Ti2O7(100) and the Gd2Ti2O7 pyrochlore used by Chen et al. [Phys. Rev. Lett. 88, 105901 (2002)], both yielded a single peak, unlike the previous result on the latter that found two peaks. The current results give no evidence for …


Performance Characteristics Of Beamline 6.3.1 From 200 Ev To 2000 Ev At The Advanced Light Source, Ponnusamy Nachimuthu, J. H. Underwood, C. D. Kemp, Eric M. Gullikson, Dennis W. Lindle, David K. Shuh, Rupert C. Perera Jan 2004

Performance Characteristics Of Beamline 6.3.1 From 200 Ev To 2000 Ev At The Advanced Light Source, Ponnusamy Nachimuthu, J. H. Underwood, C. D. Kemp, Eric M. Gullikson, Dennis W. Lindle, David K. Shuh, Rupert C. Perera

Chemistry and Biochemistry Faculty Research

Bend magnet beamline 6.3.1 at the Advanced Light Source operates from 200 eV to 2000 eV, primarily used for x-ray absorption fine structure investigations. The beamline optics consist of a compact, entrance-slitless, Hettrick-Underwood type variable-line-spacing plane-grating monochromator and refocusing mirrors to provide a 25 μm × 500 μm spot at the focal point in the reflectometer end station. Wavelength is scanned by the simple rotation of the grating and illuminates a fixed exit slit. The LabView based beamline control and data acquisition computer code has been implemented to provide a convenient interface to the user. The dedicated end station is …


In-Situ X-Ray-Absorption Spectroscopy Study Of Hydrogen Absorption By Nickel-Magnesium Thin Films, B. Farangis, Ponnusamy Nachimuthu, T. J. Richardson, J. L. Slack, Rupert C. Perera, Eric M. Gullikson, Dennis W. Lindle, M. Rubin Jul 2002

In-Situ X-Ray-Absorption Spectroscopy Study Of Hydrogen Absorption By Nickel-Magnesium Thin Films, B. Farangis, Ponnusamy Nachimuthu, T. J. Richardson, J. L. Slack, Rupert C. Perera, Eric M. Gullikson, Dennis W. Lindle, M. Rubin

Chemistry and Biochemistry Faculty Research

Structural and electronic properties of co-sputtered Ni-Mg thin films with varying Ni to Mg ratio were studied by in-situ x-ray absorption spectroscopy in the Ni L-edge and Mg K-edge regions. Co-deposition of the metals led to increased disorder and decreased coordination around Ni and Mg compared to pure metal films. Exposure of the metallic films to hydrogen resulted in formation of hydrides and increased disorder. The presence of hydrogen as a near neighbor around Mg caused a drastic reduction in the intensities of multiple scattering resonances at higher energies. The optical switching behavior and changes in the x-ray spectra varied …


Neutral Dissociation Of Hydrogen Following Photoexcitation Of Hcl At The Chlorine K Edge, D. L. Hansen, J. Cotter, G. R. Fisher, K. T. Leung, R. Martin, Paul Neill, Rupert C. Perera, I. A. Sellin, Marc Simon, Y. Uehara, B. Vanderford, S. B. Whitfield Apr 1998

Neutral Dissociation Of Hydrogen Following Photoexcitation Of Hcl At The Chlorine K Edge, D. L. Hansen, J. Cotter, G. R. Fisher, K. T. Leung, R. Martin, Paul Neill, Rupert C. Perera, I. A. Sellin, Marc Simon, Y. Uehara, B. Vanderford, S. B. Whitfield

Chemistry and Biochemistry Faculty Research

Time-of-flight mass spectroscopy was used to study the relaxation dynamics of HCl following photoexcitation in the vicinity of the Cl K edge (~2.8 keV) using monochromatic synchrotron radiation. At the lowest resonant excitation to the 6ơ* antibonding orbital, almost half of the excited molecules decay by emission of a neutral H atom, mostly in coincidence with a highly charged Cln1 ion. The present work demonstrates that neutral-atom emission can be a significant decay channel for excited states with very short lifetimes (1 fs). [S1050-2947(98)03604-X]


Nondipole Resonant X-Ray-Raman Spectroscopy: Polarized Inelastic Scattering At The K Edge Of Cl2, J. D. Mills, J. A. Sheehy, T. A. Ferrett, S. H. Southworth, R. Mayer, Dennis W. Lindle, P. W. Langhoff Jul 1997

Nondipole Resonant X-Ray-Raman Spectroscopy: Polarized Inelastic Scattering At The K Edge Of Cl2, J. D. Mills, J. A. Sheehy, T. A. Ferrett, S. H. Southworth, R. Mayer, Dennis W. Lindle, P. W. Langhoff

Chemistry and Biochemistry Faculty Research

Experimental and theoretical studies are reported on the inelastic (Raman) scattering of wavelength-selected polarized x rays from the K edge of gas-phase chlorine molecules. The polarized emission spectra exhibit prominent nondipole features consequent of phase variations of the incident and emitted radiation over molecular dimensions, as predicted by the Kramers-Heisenberg scattering formalism. Issues pursuant to the detection of core-hole localization by resonant Raman scattering from homonuclear diatomic molecules are critically examined. [S0031-9007(97)03486-8]


Cross Sections For The Production Of He+ (Np) 2p0 States By 50 To 150 Kev Proton Impact On Helium, Wayne C. Stolte, R. Bruch Sep 1996

Cross Sections For The Production Of He+ (Np) 2p0 States By 50 To 150 Kev Proton Impact On Helium, Wayne C. Stolte, R. Bruch

Chemistry and Biochemistry Faculty Research

Cross sections have been measured for the production of He+ (np) 2Po states, n=2,3,4, by proton impact on helium over a projectile velocity range of 1.42–2.45 a.u. (50 ≤E≤150 keV). Cross sections were determined by measuring the extreme ultraviolet photons emitted from excited He1 ions. The data indicate a lower energy than expected for the maximum cross section. A comparison of the present results in terms of projectile energy dependance with the cross sections for excitation to He (1snp) 1Po, ionization, and total electron capture suggests the primary mechanism …


Design And Performance Of The Advanced-Light-Source Double-Crystal Monochromator, G. Jones, S. Ryce, Dennis W. Lindle, B. A. Karlin, J. C. Woicik, Rupert C. Perera Feb 1995

Design And Performance Of The Advanced-Light-Source Double-Crystal Monochromator, G. Jones, S. Ryce, Dennis W. Lindle, B. A. Karlin, J. C. Woicik, Rupert C. Perera

Chemistry and Biochemistry Faculty Research

A new “Cowan type” double-crystal monochromator, based on the boomerang design used at National Synchrotron Light Source (NSLS) beamline X-24A, has been developed for beamline 9.3.1 at the Advanced Light Source (ALS), a windowless ultrahigh vacuum beamline covering the 1-6 keV photon-energy range. Beamline 9.3.1 is designed to simultaneously achieve the goals of high energy resolution, high flux, and high brightness at the sample. The mechanical design of the monochromator has been simplified, and recent developments in technology have been included. Measured mechanical precision of the monochromator shows significant improvement over existing designs. In tests with x-rays at NSLS beamline …


High-Brightness Beamline For X-Ray Spectroscopy At The Advanced Light Source, Rupert C. Perera, G. Jones, Dennis W. Lindle Feb 1995

High-Brightness Beamline For X-Ray Spectroscopy At The Advanced Light Source, Rupert C. Perera, G. Jones, Dennis W. Lindle

Chemistry and Biochemistry Faculty Research

Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard-x-ray beamline, and its brightness will be an order-of-magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design …


High-Energy Behavior Of The Double Photoionization Of Helium From 2 To 12 Kev, Jon C. Levin, Ivan A. Sellin, B. M. Johnson, Dennis W. Lindle, R. D. Miller, Y. Azuma, H. G. Berry, D.-H. Lee, N. Berrah Jan 1993

High-Energy Behavior Of The Double Photoionization Of Helium From 2 To 12 Kev, Jon C. Levin, Ivan A. Sellin, B. M. Johnson, Dennis W. Lindle, R. D. Miller, Y. Azuma, H. G. Berry, D.-H. Lee, N. Berrah

Chemistry and Biochemistry Faculty Research

We report the ratio of double-to-single photoionization of He at several photon energies from 2 to 12 keV. By time-of-Aight methods, we find a ratio consistent with an asymptote at 1.5%±0.2%, essentially reached by h v≈4 keV. Fair agreement is obtained with older shake calculations of Byron and Joachain [Phys. Rev. 164, 1 (1967)], of Aberg [Phys. Rev. A 2, 1726 (1970)], and with recent many-body perturbation theory (MBPT) of Ishihara, Hino, and McGuire [Phys. Rev. A 44, 6980 (1991)]. The result lies below earlier MPBT calculations by Amusia et al. [J. Phys. B 8 …


Surface Structure Of √3x√3r 30 Cl/Ni(111) Determined Using Low-Temperature Angle-Resolved-Photoemission Extended Fine Structure, Li-Qiong Wang, Z. Hussain, Z. Q. Huang, A. E. Schach Von Wittenau, Dennis W. Lindle, D. A. Shirley Dec 1991

Surface Structure Of √3x√3r 30 Cl/Ni(111) Determined Using Low-Temperature Angle-Resolved-Photoemission Extended Fine Structure, Li-Qiong Wang, Z. Hussain, Z. Q. Huang, A. E. Schach Von Wittenau, Dennis W. Lindle, D. A. Shirley

Chemistry and Biochemistry Faculty Research

A surface structural study of the √3 × √3 R30° Cl/Ni(111) adsorbate system was made using low-temperature angle-resolved photoemission extended fine structure. The experiments were performed along two emission directions, [111] and [110], and at two temperatures, 120 and 300 K. The multiple-scattering spherical-wave analysis determined that the Cl atom adsorbs in the fcc threefold hollow site, 1.837(8) Å above the first nickel layer, with a Cl-Ni bond length of 2.332(6) Å, and an approximate 5% contraction between the first and the second nickel layers (the errors in parentheses are statistical standard deviations only).


Anisotropy Of Polarized X-Ray Emission From Molecules, S. H. Southworth, Dennis W. Lindle, R. Mayer, P. L. Cowan Aug 1991

Anisotropy Of Polarized X-Ray Emission From Molecules, S. H. Southworth, Dennis W. Lindle, R. Mayer, P. L. Cowan

Chemistry and Biochemistry Faculty Research

Strongly anisotropic, polarized Cl K-V x-ray emission from gas-phase CF3Cl has been observed following resonant excitation with a linearly polarized x-ray beam. Distinctively different angular distributions are observed for x-ray emission involving molecular orbitals of different symmetries. A classical model of the x-ray absorption-emission process accurately describes the observed radiation patterns.


Measurement Of The Ratio Of Double-To-Single Photoionization Of Helium At 2.8 Kev Using Synchrotron Radiation, Jon C. Levin, Dennis W. Lindle, N. Keller, R. D. Miller, Y. Azuma, N. Berrah Mansour, H. G. Berry, Ivan A. Sellin Aug 1991

Measurement Of The Ratio Of Double-To-Single Photoionization Of Helium At 2.8 Kev Using Synchrotron Radiation, Jon C. Levin, Dennis W. Lindle, N. Keller, R. D. Miller, Y. Azuma, N. Berrah Mansour, H. G. Berry, Ivan A. Sellin

Chemistry and Biochemistry Faculty Research

We report the first measurement of the ratio of double-to-single photoionization of helium well above the double-ionization threshold. Using a time-of-flight technique, we find He++/He+=1.6±0.3% at hν=2.8 keV. This value lies between calculations by Amusia (2.3%) and by Samson, who predicts 1.2% by analogy with electron-impact ionization cross sections of singly charged ions. Good agreement is obtained with older shake calculations of Byron and Joachain, and of Åberg, who predict 1.7%.


Molecular-Orbital Studies Via Satellite-Free X-Ray Fluorescence: Cl-K Absorption And K–Valence-Level Emission Spectra Of Chlorofluoromethanes, Rupert C. Perera, P. L. Cowan, Dennis W. Lindle, R. E. Lavilla, T. Jach, R. D. Deslattes Apr 1991

Molecular-Orbital Studies Via Satellite-Free X-Ray Fluorescence: Cl-K Absorption And K–Valence-Level Emission Spectra Of Chlorofluoromethanes, Rupert C. Perera, P. L. Cowan, Dennis W. Lindle, R. E. Lavilla, T. Jach, R. D. Deslattes

Chemistry and Biochemistry Faculty Research

X-ray absorption and emission measurements in the vicinity of the chlorine K edge of the three chlorofluoromethanes have been made using monochromatic synchrotron radiation as the source of excitation. By selectively tuning the incident radiation to just above the Cl 1s single-electron ionization threshold for each molecule, less complex x-ray-emission spectra are obtained. This reduction in complexity is attributed to the elimination of multielectron transitions in the Cl K shell, which commonly produce satellite features in x-ray emission. The resulting "satellite-free" x-ray-emission spectra exhibit peaks due only to electrons in valence molecular orbitals filling a single Cl 1s vacancy. These …


Polarized X-Ray-Emission Studies Of Methyl Chloride And The Chlorofluoromethanes, Dennis W. Lindle, P. L. Cowan, T. Jach, R. E. Lavilla, R. D. Deslattes, Rupert C. Perera Mar 1991

Polarized X-Ray-Emission Studies Of Methyl Chloride And The Chlorofluoromethanes, Dennis W. Lindle, P. L. Cowan, T. Jach, R. E. Lavilla, R. D. Deslattes, Rupert C. Perera

Chemistry and Biochemistry Faculty Research

A new technique sensitive to molecular orientation and geometry, and based on measuring the polarization of x-ray emission, has been applied to the Cl-containing molecules methyl chloride (CH3Cl) and the chlorofluoromethanes (CF3Cl, CF2Cl2, and CFCl3) in the gas phase. Upon selective excitation using monochromatic synchrotron radiation in the Cl K-edge (Cl 1s) near-threshold region, polarization-selective x-ray emission studies reveal highly polarized molecular valence x-ray fluorescence for all four molecules. The degree and the orientation of the polarized emission are observed to be sensitive to the incident excitation energy near …


Direct Determination Of Molecular-Orbital Symmetry Of H2s Using Polarized X-Ray Emission, R. Mayer, Dennis W. Lindle, S. H. Southworth, P. L. Cowan Jan 1991

Direct Determination Of Molecular-Orbital Symmetry Of H2s Using Polarized X-Ray Emission, R. Mayer, Dennis W. Lindle, S. H. Southworth, P. L. Cowan

Chemistry and Biochemistry Faculty Research

X-ray emission from the molecule H2S is strongly polarized following excitation of a sulfur K-shell electron to an unoccupied subthreshold molecular orbital with a polarized x-ray beam. Changes in the polarization of the emission spectrum are observed as the incident beam's energy is swept across the subthreshold absorption resonance. The previously unresolved absorption resonance is shown experimentally to be primarily associated with a molecular orbital of b2 symmetry, but with a high-excitation-energy component due to an orbital with a1 symmetry. Satellite emission intensity is shown to depend on the primary photon energy and is therefore associated …


Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle Aug 1990

Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle

Chemistry and Biochemistry Faculty Research

Argon photoion spectra have been obtained for the first time in coincidence with K-LL and K-LM Auger electrons, as a function of photon energy. The simplified charge distributions which result exhibit a much more pronounced photon-energy dependence than do the more complicated noncoincident spectra. In the near-K-threshold region, Rydberg shakeoff of np levels, populated by resonant excitation of K electrons, occurs with significant probability, as do double-Auger processes and recapture of the K photoelectron through postcollision interaction.