Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Atomic, Molecular and Optical Physics

Quantum Interference Experiments, Modular Variables And Weak Measurements, Jeff Tollaksen, Yakir Aharonov, Aharon Casher, Tirzah Kaufherr, Shmuel Nussinov Jan 2010

Quantum Interference Experiments, Modular Variables And Weak Measurements, Jeff Tollaksen, Yakir Aharonov, Aharon Casher, Tirzah Kaufherr, Shmuel Nussinov

Mathematics, Physics, and Computer Science Faculty Articles and Research

We address the problem of interference using the Heisenberg picture and highlight some new aspects through the use of pre-selection, post-selection, weak measurements and modular variables. We present a physical explanation for the different behaviors of a single particle when the distant slit is open or closed; instead of having a quantum wave that passes through all slits, we have a localized particle with non-local interactions with the other slit(s). We introduce a Gedanken experiment to measure this non-local exchange. While the Heisenberg and Schrodinger pictures are equivalent formulations of quantum mechanics, nevertheless, the results discussed here support a new …


Measurement Of Hyperfine Coupling Constants Of The 5d²D₃/₂ And 5d²D₅/₂ Levels In Atomic Cesium Using Polarization Quantum Beat Spectroscopy, Wo Yei Apr 1995

Measurement Of Hyperfine Coupling Constants Of The 5d²D₃/₂ And 5d²D₅/₂ Levels In Atomic Cesium Using Polarization Quantum Beat Spectroscopy, Wo Yei

Physics Theses & Dissertations

Accurate measurements of hyperfine constants have revealed effects that can not be explained by a simple hydrogenic picture of the alkali atoms such as cesium [1-3]. More precise experimental results and theoretical treatments are in demand for the alkali elements, especially for atomic cesium because of its wide range of applications. Therefore, it is essential to understand its atomic and nuclear structure. Precision measurement of its excited-states properties such as hyperfine structure provides global information on nuclear charge and current distributions and also serves as a check to the theory and a calibration of calculated excited state wave functions. Accurate …