Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

Custom Calibration And Correction Of Photoemission Electron Microscope Images Using Graphene, Henry Bell May 2022

Custom Calibration And Correction Of Photoemission Electron Microscope Images Using Graphene, Henry Bell

Macalester Journal of Physics and Astronomy

The Photoemission Electron Microscope (PEEM) is a full-field electron microscope that utilizes the photoelectric effect to image a surface. Due to a spatial resolution on the order of 10 nanometers and its ability to image both the morphology of a surface and its band structure, it is a useful tool for understanding the properties of materials for use in electronic devices. To correct for random sample misalignment and the experimental frame of reference in the spectroscopy mode of the PEEM, the 3D dataset must be rotated in both the momentum and energy coordinates which requires pixel calibration and energy alignment. …


Characterizing Plasma With Emission Tomography-Feasibility Study On Synthetic And Experimental Data, M. Nikolić, A. Samolov, A. Godunov, L. Vušković,, S. Popović May 2020

Characterizing Plasma With Emission Tomography-Feasibility Study On Synthetic And Experimental Data, M. Nikolić, A. Samolov, A. Godunov, L. Vušković,, S. Popović

Physics Faculty Publications

We present a feasibility study on different tomographic algorithms to overcome the issues of finite sets of projection data, limited viewing angles, and noisy data, which cause the tomographic reconstruction to be an ill-posed inversion problem. We investigated three approaches: single angle Abel inversion, two angle approach, and multiple angle 2D plasma tomography. These methods were tested on symmetric and asymmetric sample functions and on experimental results from a supersonic flowing argon microwave plasma sustained in a cylindrical quartz cavity. The analysis focused on the afterglow region of the microwave flow where a plasmoid-like formation was observed. We investigated the …


Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors With Paramagnetic Properties, Zaven Ovanesyan, L. Christopher Mimun, Gangadharan Ajith Kumar, Brian G. Yust, Chamath Dannongoda, Karen S. Martirosyan, Dhiraj K. Sardar Sep 2015

Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors With Paramagnetic Properties, Zaven Ovanesyan, L. Christopher Mimun, Gangadharan Ajith Kumar, Brian G. Yust, Chamath Dannongoda, Karen S. Martirosyan, Dhiraj K. Sardar

Physics and Astronomy Faculty Publications and Presentations

Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In …


Low Intensity Gamma-Ray Spectroscopy Of The Lake Labyrinth Meteorite, Tristan C. Paul Sep 2015

Low Intensity Gamma-Ray Spectroscopy Of The Lake Labyrinth Meteorite, Tristan C. Paul

Physics

A 23.7g fragment of the Lake Labyrinth Meteorite (fell in 1924, collected in 1934 at Lake Labyrinth in South Australia, Australia) was re-investigated for evidence of the presence of 98Tc using a two dimensional low-intensity gamma-ray spectrometer. A new calibration technique using 26Al sources found the gamma-rays previously thought to be due to 98Tc are more likely from 166Ho. The presence of 166Ho is most likely due to activation of the stable 165Ho in the meteorite from terrestrial background sources where it was stored.


First Measurement Of The Polarization Observable E In The P→ (Ɣ→, Π+) In Reaction Up To 2.25 Gev, S. Strauch, W. J. Briscoe, M. Döring, E. Klempt, V. A. Nikonov, E. Pasyuk, D. Rönchen, A.V. Sarantsev, I. Strakovsky, R. Workman, K. P. Adhikari, D. Adikaram, L. El Fassi Jan 2015

First Measurement Of The Polarization Observable E In The P→ (Ɣ→, Π+) In Reaction Up To 2.25 Gev, S. Strauch, W. J. Briscoe, M. Döring, E. Klempt, V. A. Nikonov, E. Pasyuk, D. Rönchen, A.V. Sarantsev, I. Strakovsky, R. Workman, K. P. Adhikari, D. Adikaram, L. El Fassi

Physics Faculty Publications

First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction ɣp→π+n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been …


Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner Jul 2014

Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner

Jay S Huebner

Providing the tools and know-how to apply the principles of astronomy first-hand, these 43 laboratory exercises each contain an introduction that clearly shows budding astronomers why the particular topic of that lab is of interest and relevant to astronomy. About one-third of the exercises are devoted solely to observation, and no mathematics is required beyond simple high school algebra and trigonometry.Organizes exercises into six major topics—sky, optics and spectroscopy, celestial mechanics, solar system, stellar properties, and exploration and other topics—providing clear outlines of what is involved in the exercise, its purpose, and what procedures and apparatus are to be used. …


The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown Aug 2011

The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown

STAR Program Research Presentations

The Fusion and Astrophysics (FAST) Calibration and Diagnostic Facility uses the original Electron Beam Ion Trap (EBIT-I) to profile x-ray filters that are used in the Dante Soft X-Ray Diagnostic at the National Ignition Facility (NIF). FAST has an advantage over any other facility not only for its high accuracy, but also for its proximity to NIF in the Lawrence Livermore National Laboratory (LLNL). This makes for highly accurate and near-instantaneous filter calibration turnover.

EBIT-I was first constructed to create, trap, and observe static highly charged ions (HCIs) and conduct experimental astrophysics (creating an x-ray spectroscopy catalogue of ions). To …


Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown Aug 2011

Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown

STAR Program Research Presentations

Astrophysicists use radiation to investigate the physics controlling a variety of celestial sources, including stellar atmospheres, black holes, and binary systems. By measuring the spectrum of the emitted radiation, astrophysicists can determine a source’s temperature and composition. Accurate atomic data are needed for reliably interpreting these spectra. Here we present an overview of how LLNL’s EBIT facility is used to put the atomic data on sound footing for use by the high energy astrophysics community.


Hot Stars With Disks, Erika Dawn Grundstrom Aug 2007

Hot Stars With Disks, Erika Dawn Grundstrom

Physics and Astronomy Dissertations

The evolutionary paths of the massive O and B type stars are often defined by angular momentum transformations that involve circumstellar gas disks. This circumstellar gas is revealed in several kinds of observations, and here I describe a series of investigations of the hydrogen line emission from such disk using detailed studies of five massive binaries and a survey of 128 Be stars. By examining three sets of spectra of the active mass-transfer binary system RY Scuti, I determined masses of 7.1 +/- 1.2 M_sun for the bright supergiant and 30.0 +/- 2.1 M_sun for the massive companion that is …


Dust Within The Central Regions Of Seyfert Galaxies, Rajesh Deo Aug 2007

Dust Within The Central Regions Of Seyfert Galaxies, Rajesh Deo

Physics and Astronomy Dissertations

We present a detailed study of mid-infrared spectroscopy and optical imaging of Seyfert galaxies with the goal of understanding the properties of astronomical dust around the central supermassive black hole and the accretion disk. Specifically, we have studied Spitzer Space Telescope mid-infrared spectra of 12 Seyfert 1.8-1.9s and 58 Seyfert 1s and 2s available in the Spitzer public archive, and the nuclear dust morphology in the central 500 pc of 91 narrow and broad-line Seyfert 1s using optical images from the Hubble Space Telescope. We have also developed visualization software to aid the understanding of the geometry of the central …


White Dwarfs In The Solar Neighborhood, John P. Subasavage, Jr. Aug 2007

White Dwarfs In The Solar Neighborhood, John P. Subasavage, Jr.

Physics and Astronomy Dissertations

The study of white dwarfs (WDs) provides insight into understanding WD formation rates, evolution, and space density. Individually, nearby WDs are excellent candidates for astrometric planetary searches because the astrometric signature is greater than for an identical, more distant WD system. As a population, a complete volume-limited sample is necessary to provide unbiased statistics; however, their intrinsic faintness has allowed some to escape detection.

The aim of this dissertation is to identify nearby WDs, accurately characterize them, and target a subset of potentially interesting WDs for follow-up analyses. The most unambiguous method of identifying new WDs is by their proper …


High-Temperature Calcium Vapor Cell For Spectroscopy On The 4s2 1s0-4s4p 3p1 Intercombination Line, Christopher J. Erickson, Brian Neyenhuis, Dallin S. Durfee Dec 2005

High-Temperature Calcium Vapor Cell For Spectroscopy On The 4s2 1s0-4s4p 3p1 Intercombination Line, Christopher J. Erickson, Brian Neyenhuis, Dallin S. Durfee

Faculty Publications

We have demonstrated a high-temperature vapor cell for absorption spectroscopy on the Ca intercombination line. The cell uses a dual-chamber design to achieve the high temperatures necessary for an optically dense vapor while avoiding the necessity of high-temperature vacuum valves and glass-to-metal seals. We have observed over 50% absorption in a single pass through the cell. Although pressure broadening in the cell prevented us from performing saturated-absorption spectroscopy, the broadening resulted in higher signal-to-noise ratios by allowing us to probe the atoms with intensities much greater than the 0.2µW/cm2 saturation intensity of the unbroadened transition. The techniques presented in this …


Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner Jan 1996

Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner

Physics Faculty Research and Scholarship

Providing the tools and know-how to apply the principles of astronomy first-hand, these 43 laboratory exercises each contain an introduction that clearly shows budding astronomers why the particular topic of that lab is of interest and relevant to astronomy. About one-third of the exercises are devoted solely to observation, and no mathematics is required beyond simple high school algebra and trigonometry.Organizes exercises into six major topics—sky, optics and spectroscopy, celestial mechanics, solar system, stellar properties, and exploration and other topics—providing clear outlines of what is involved in the exercise, its purpose, and what procedures and apparatus are to be used. …


Mesostructure Of Photoluminescent Porous Silicon, David D. Allred, F. Ruiz, C. Vázquez-López, Jesus González-Hernández, G. Romero-Paredes, R. Peña-Sierra, G. Torres-Delgado Jul 1994

Mesostructure Of Photoluminescent Porous Silicon, David D. Allred, F. Ruiz, C. Vázquez-López, Jesus González-Hernández, G. Romero-Paredes, R. Peña-Sierra, G. Torres-Delgado

Faculty Publications

Scanning electron microscopy, atomic force microscopy, and Raman spectroscopy were used to characterize the microstructure of photoluminescent porous silicon (PS) layers formed by the anodic etching (HF:H2O:ethanol), at various current densities, of p-type (100) silicon wafers possessing resitivity in the range 1-2 Ω cm. Existing models for the origin of luminescence in PS are not supported by our observations. Cross-sectional as well as surface atomic force micrographs show the material to be clumpy rather than columnar; rodlike structures are not observed down to a scale of 40 nm. A three-dimensional model of the mesostructure of porous silicon is discussed. Room-temperature …