Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2004

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 661 - 690 of 702

Full-Text Articles in Physics

Probing Molecular Free Energy Landscapes By Periodic Loading, Oliver Braun, Andreas Hanke, Udo Seifert Jan 2004

Probing Molecular Free Energy Landscapes By Periodic Loading, Oliver Braun, Andreas Hanke, Udo Seifert

Physics and Astronomy Faculty Publications and Presentations

Single molecule pulling experiments provide information about interactions in biomolecules that cannot be obtained by any other method. However, the reconstruction of the molecule’s free energy profile from the experimental data is still a challenge, in particular, for the unstable barrier regions. We propose a new method for obtaining the full profile by introducing a periodic ramp and using Jarzynski’s relation for obtaining equilibrium quantities from nonequilibrium data. Our simulated experiments show that this method delivers significant more accurate data than previous methods, under the constraint of equal experimental effort.


Coalescence Remnant Of Spinning Binary Black Holes, J Baker, M. Campanelli, C. O. Lousto, R. Takahashi Jan 2004

Coalescence Remnant Of Spinning Binary Black Holes, J Baker, M. Campanelli, C. O. Lousto, R. Takahashi

Physics and Astronomy Faculty Publications and Presentations

We compute the gravitational radiation generated in the evolution of a family of close binary black hole configurations, using a combination of numerical and perturbative approximation methods. We evolve the binaries with spins s aligned or counteraligned with the orbital angular momentum from near the innermost stable circular orbit down to the final single rotating black hole. For the moderately spinning holes studied here the remnant Kerr black holes formed at the end of an inspiral process have rotation parameters a/M≈0.72+0.32(s/mH), suggesting it is difficult (though not excluded) to end up with near maximally rotating holes from such scenarios.


Hole Digging In Ensembles Of Tunneling Molecular Magnets, I Tupitsyn, P Stamp, N Prokof'ev Jan 2004

Hole Digging In Ensembles Of Tunneling Molecular Magnets, I Tupitsyn, P Stamp, N Prokof'ev

Physics Department Faculty Publication Series

The nuclear spin-mediated quantum relaxation of ensembles of tunneling magnetic molecules causes a “hole” to appear in the distribution of internal fields in the system. The form of this hole and its time evolution, are studied using Monte Carlo simulations. It is shown that the line shape of the tunneling hole in a partially depolarized sample must have a Lorentzian line shape. The short-time half-width ξo in Fe8 crystals should be ∼E0, the half-width of the nuclear spin multiplet, but this result is not generally true. The Lorentzian hole line shape and the short-time √t relaxation in weakly polarized samples …


Weakly Interacting Bose Gas In The Vicinity Of The Critical Point, Nikolai Prokof'ev, O Ruebenacker, Boris Svistunov Jan 2004

Weakly Interacting Bose Gas In The Vicinity Of The Critical Point, Nikolai Prokof'ev, O Ruebenacker, Boris Svistunov

Physics Department Faculty Publication Series

We consider a three-dimensional weakly interacting Bose gas in the fluctuation region (and its vicinity) of the normal-superfluid phase transition point. We establish relations between basic thermodynamic functions: density, n(T, ì), superfluid density ns(T, ì), and condensate density, ncnd(T, ì). Being universal for all weakly interacting |ø|4 systems, these relations are obtained from Monte Carlo simulations of the classical |ø|4 model on a lattice. Comparing with the mean-field results yields a quantitative estimate of the fluctuation region size. Away from the fluctuation region, on the superfluid side, all the data perfectly agree with the predictions of the quasicondensate mean field …


Superfluid-Insulator Transition In Commensurate Disordered Bosonic Systems: Large-Scale Worm Algorithm Simulations, Nikolai Prokof'ev, Boris Svistunov Jan 2004

Superfluid-Insulator Transition In Commensurate Disordered Bosonic Systems: Large-Scale Worm Algorithm Simulations, Nikolai Prokof'ev, Boris Svistunov

Physics Department Faculty Publication Series

We report results of large-scale Monte Carlo simulations of superfluid-insulator transitions in disordered commensurate 2D bosonic systems. In the off-diagonal disorder case, we find that the transition is to a gapless incompressible insulator, and its dynamical critical exponent is z=1.5(2). In the diagonal-disorder case, we prove the conjecture that rare statistical fluctuations are inseparable from critical fluctuations on the largest scales and ultimately result in crossover to the generic universality class (apparently with z=2). However, even at strong disorder, the universal behavior sets in only at very large space-time distances. This explains why previous studies of smaller clusters mimicked a …


Detecting Supercounterfluidity By Ramsey Spectroscopy, A Kuklov, Nikolai Prokof'ev, Boris Svistunov Jan 2004

Detecting Supercounterfluidity By Ramsey Spectroscopy, A Kuklov, Nikolai Prokof'ev, Boris Svistunov

Physics Department Faculty Publication Series

A two-component system of ultracold atoms in an optical lattice at integer total filling factor and strong enough onsite repulsion can form a supercounterfluid (SCF) phase, which can be viewed as the Bose-Einstein condensate (BEC) of pairs formed by particles of one sort and holes of another sort. In this quasimolecular BEC, no single-component BEC exists, and the net atomic flow is prohibited. We show that, in the case of the interconvertible species (like hyperfine states of Rb), the corresponding order parameter can be detected by spatially selective Ramsey spectroscopy. The method can be used, in particular, for revealing a …


Kelvin-Wave Cascade And Decay Of Superfluid Turbulence, E Kozik, Boris Svistunov Jan 2004

Kelvin-Wave Cascade And Decay Of Superfluid Turbulence, E Kozik, Boris Svistunov

Physics Department Faculty Publication Series

Kelvin waves (kelvons), the distortion waves on vortex lines, play a key part in the relaxation of superfluid turbulence at low temperatures. We present a weak-turbulence theory of kelvons. We show that nontrivial kinetics arises only beyond the local-induction approximation and is governed by three-kelvon collisions; a corresponding kinetic equation is derived. We prove the existence of Kolmogorov cascade and find its spectrum. The qualitative analysis is corroborated by numeric study of the kinetic equation. The application of the results to the theory of superfluid turbulence is discussed.


Investigation Of Single Bubble Sonoluminescence By Acoustic Cavitations Of D20, Suzanna Williams, James Black, Curtis Harris, Ralph H. France Iii Jan 2004

Investigation Of Single Bubble Sonoluminescence By Acoustic Cavitations Of D20, Suzanna Williams, James Black, Curtis Harris, Ralph H. France Iii

The Corinthian

The acoustic cavitation of D20 is measured using an ocean optics ultraviolet spectrometer. Walls of a container were constructed for the D20 using 2mm thick by 6 cm long quartz cylindrical cavity. The upper and lower transducers are silver plated piezoelectric quartz crystals. Compressing a Teflon seal between the piezoelectric crystal and quartz tube creates a watertight seal. Argon is bubbled through the solution of D20 to replace any other existing dissolved gases, as single bubble sonoluminescence is known to work best with dissolved noble gases. The container is immersed in the D2 …


Uranium Oxide As A Highly Reflective Coating From 100-400 Ev, Richard L. Sandberg, David D. Allred, Luke J. Bissell, Jed E. Johnson, R. Steven Turley Jan 2004

Uranium Oxide As A Highly Reflective Coating From 100-400 Ev, Richard L. Sandberg, David D. Allred, Luke J. Bissell, Jed E. Johnson, R. Steven Turley

Faculty Publications

We present the measured reflectances (Beamline 6.3.2, ALS and LBNL) of naturally oxidized uranium and naturally oxidized nickel thin films from 100-460 eV (2.7 to 11.6 nm) at 5 and 15 degrees grazing incidence. These show that uranium as UO2, can fulfill its promise as the highest known single surface reflector for this portion of the soft x-ray region, being nearly twice as reflective as nickel in the 124-250 eV (5-10 nm) region. This is due to its large index of refraction coupled with low absorption. Nickel is commonly used in soft x-ray applications in astronomy and synchrotrons. (Its reflectance …


A Derivative Of The Gerasimov-Drell-Hearn Sum Rule, V Pascalutsa, Br Holstein, M Vanderhaeghen Jan 2004

A Derivative Of The Gerasimov-Drell-Hearn Sum Rule, V Pascalutsa, Br Holstein, M Vanderhaeghen

Physics Department Faculty Publication Series

We derive a sum rule which establishes a linear relation between a particle's anomalous magnetic moment and a quantity connected to the photoabsorption cross section. This quantity cannot be measured directly. However, it can be computed within a given theory. As an example, we demonstrate validity of the sum rule in QED at tree level—the renowned Schwinger's correction to the anomalous magnetic moment is readily reproduced. In the case of the strong interactions, we also consider the calculation of the nucleon magnetic moment within chiral theories.


Superionicity In Na3Po4: A Molecular Dynamics Simulation, Wei-Guo Yin, Jianjun Liu, Chun-Gang Duan, Wai-Ning Mei, Robert W. Smith, John R. Hardy Jan 2004

Superionicity In Na3Po4: A Molecular Dynamics Simulation, Wei-Guo Yin, Jianjun Liu, Chun-Gang Duan, Wai-Ning Mei, Robert W. Smith, John R. Hardy

Physics Faculty Publications

Fast ionic conduction in solid Na3PO4 is studied by use of molecular dynamics simulation based on the modified Lu-Hardy approach. We obtain reasonable agreement with experiment for the structural transition and diffusion of the sodium ions. All the sodium ions are found to contribute comparably to the high ionic conductivity. The results of the simulation are discussed in terms of the relative magnitude of the two proposed transport mechanisms: percolation and paddle-wheel. It appears to us that the percolation mechanism dominates the sodium diffusion.


Kinetics Of Binary Nucleation Of Vapors In Size And Composition Space, Sergey P. Fisenko, Gerald Wilemski Jan 2004

Kinetics Of Binary Nucleation Of Vapors In Size And Composition Space, Sergey P. Fisenko, Gerald Wilemski

Physics Faculty Research & Creative Works

We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent variables: the total number of molecules g and the molar composition x of the cluster. The resulting kinetic equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coefficients in cluster size and composition space are obtained. For characterization of binary nucleation in gases three criteria are established. These criteria establish the relative importance of the rate processes in cluster size and composition space for different …


Smeared Phase Transition In A Three-Dimensional Ising Model With Planar Defects: Monte Carlo Simulations, Rastko Sknepnek, Thomas Vojta Jan 2004

Smeared Phase Transition In A Three-Dimensional Ising Model With Planar Defects: Monte Carlo Simulations, Rastko Sknepnek, Thomas Vojta

Physics Faculty Research & Creative Works

We present results of large-scale Monte Carlo simulations for a three-dimensional Ising model with short-range interactions and planar defects, i.e., disorder perfectly correlated in two dimensions. We show that the phase transition in this system is smeared, i.e., there is no single critical temperature, but different parts of the system order at different temperatures. This is caused by effects similar to but stronger than Griffiths phenomena. In an infinite-size sample there is an exponentially small but finite probability to find an arbitrary large region devoid of impurities. Such a rare region can develop true long-range order while the bulk system …


Traversal Times For Random Walks On Small-World Networks, V. M. Kenkre, Paul Ernest Parris Jan 2004

Traversal Times For Random Walks On Small-World Networks, V. M. Kenkre, Paul Ernest Parris

Physics Faculty Research & Creative Works

We study the mean traversal time tau for a class of random walks on Newman-Watts small-world networks, in which steps around the edge of the network occur with a transition rate F that is different from the rate f for steps across small-world connections. when f>>F, the mean time tau to traverse the network exhibits a transition associated with percolation of the random graph (i.e., small-world) part of the network, and a collapse of the data onto a universal curve. This transition was not observed in earlier studies in which equal transition rates were assumed for all allowed steps. …


Variational Considerations In The Study Of Carrier Transport In Organic Crystals, V. M. Kenkre, Paul Ernest Parris Jan 2004

Variational Considerations In The Study Of Carrier Transport In Organic Crystals, V. M. Kenkre, Paul Ernest Parris

Physics Faculty Research & Creative Works

A variational approach is used to investigate consequences of electron-phonon interactions between a charge carrier and multiple (specifically two) phonon branches. Phase diagrams are obtained and the nature of the transition from undressed to dressed phases of the carrier is studied with their help. No sharp transition between singly dressed and doubly dressed phases occurs. The effective carrier bandwidth, reduced by strong coupling to the high-frequency branch is found to be stable with respect to small to intermediate values of additional coupling to the low-frequency branch. This finding lends support to transport calculations based on the idea that carriers in …


Laser Writing Of Semiconductor Nanoparticles And Quantum Dots, Massimo F. Bertino, Raghuveer Reddy Gadipalli, J. Greg Story, C. G. Williams, Guo-Hui Zhang, Chariklia Sotiriou-Leventis, Akira Tokuhiro, Suchi Guha, Nicholas Leventis Jan 2004

Laser Writing Of Semiconductor Nanoparticles And Quantum Dots, Massimo F. Bertino, Raghuveer Reddy Gadipalli, J. Greg Story, C. G. Williams, Guo-Hui Zhang, Chariklia Sotiriou-Leventis, Akira Tokuhiro, Suchi Guha, Nicholas Leventis

Physics Faculty Research & Creative Works

Silica aerogels were patterned with CdS using a photolithographic technique based on local heating with infrared (IR) light. The solvent of silica hydrogels was exchanged with an aqueous solution of the precursors CdNO3 and NH4 OH, all precooled to a temperature of 5°C. Half of the bathing solution was then replaced by a thiourea solution. After thiourea diffused into the hydrogels, the samples were exposed to a focused IR beam from a continuous wave, Nd-YAG laser. The precursors reacted in the spots heated by the IR beam to form CdS nanoparticles. We lithographed features with a diameter of …


Effects Of Localization And Amplification On Intensity Distribution Of Light Transmitted Through Random Media, Alexey Yamilov, Hui Cao Jan 2004

Effects Of Localization And Amplification On Intensity Distribution Of Light Transmitted Through Random Media, Alexey Yamilov, Hui Cao

Physics Faculty Research & Creative Works

We numerically study the statistical distribution of intensity of light transmitted through quasi-one-dimensional random media by varying the dimensionless conductance g and the amount of absorption or gain. A markedly non-Rayleigh distribution is found to be well fitted by the analytical formula of Nieuwenhuizen et al. [Phys. Rev. Lett. 74, 2674 (1995)] with a single parameter g′ . We show that in the passive random system g′ is uniquely related to g , while in amplifying or absorbing random media g′ also depends on the gain or absorption coefficient.


Highest-Quality Modes In Disordered Photonic Crystals, Alexey Yamilov, Hui Cao Jan 2004

Highest-Quality Modes In Disordered Photonic Crystals, Alexey Yamilov, Hui Cao

Physics Faculty Research & Creative Works

We studied the modes of the highest-quality factor Qm in disordered photonic crystals. by varying the strength of disorder, we identified five different scaling regimes of the ensemble averaged (Qm) with the system size. For sufficiently large systems, (Qm) reaches the maximum at some finite degree of disorder, where its value is comparable to the quality factor of an intentionally introduced single defect at the center of a photonic band gap. Near this optimal degree of disorder, we predict a superexponential increase of (Qm) with the system size, due to migration of the frequencies of the highest-quality modes toward the …


Progress At The Heidelberg Ebit, Jose R. Crespo Lopez-Urrutia, Jean Pierre Braun, Gunter Brenner, Hjalmar Bruhns, Christina Dimopoulou, I. N. Draganic, Daniel Fischer, Antonio J. Gonzalez, A. Lapierre, V. Mironov, Robert Moshammer, R. Soria Orts, Hiroyuki Tawara, M. Trinczek, Joachim Hermann Ullrich Jan 2004

Progress At The Heidelberg Ebit, Jose R. Crespo Lopez-Urrutia, Jean Pierre Braun, Gunter Brenner, Hjalmar Bruhns, Christina Dimopoulou, I. N. Draganic, Daniel Fischer, Antonio J. Gonzalez, A. Lapierre, V. Mironov, Robert Moshammer, R. Soria Orts, Hiroyuki Tawara, M. Trinczek, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

Two years after the relocation of the Heidelberg EBIT, several experiments are already in operation. Spectroscopic measurements in the optical region have delivered the most precise reported wavelengths for highly charged ions, in the case of the forbidden transitions of Ar XIV and Ar XV. The lifetimes of the metastable levels involved in those transitions has been determined with an error of less than 0.2%. A new, fully automatized x-ray crystal spectrometer allows systematic measurements with very high precision and reproducibility. Absolute measurements of the Lyman series of H-like ions are currently underway. Dielectronic recombination studies have yielded information on …


Renormalization-Group Analysis Of The Generalized Sine-Gordon Model And Of The Coulomb Gas For D > 3 Dimensions, I. Nandori, Ulrich D. Jentschura, Kornel Sailer, Gerhard Soff Jan 2004

Renormalization-Group Analysis Of The Generalized Sine-Gordon Model And Of The Coulomb Gas For D > 3 Dimensions, I. Nandori, Ulrich D. Jentschura, Kornel Sailer, Gerhard Soff

Physics Faculty Research & Creative Works

Renormalization-group (RG) flow equations have been derived for the generalized sine-Gordon model (GSGM) and the Coulomb gas (CG) in d ≥ 3 of dimensions by means of the Wegner-Houghton method, and by way of the real-space RG approach. The UV scaling laws determined by the leading-order terms of the flow equations are in qualitative agreement for all dimensions d ≥ 3, independent of the dimensionality, and in sharp contrast to the special case d=2. For the 4-dimensional GSGM it is demonstrated explicitly (by numerical calculations) that the blocked potential tends to a constant effective potential in the infrared limit, satisfying …


Rectification Of Thermal Fluctuations In Ideal Gases, Alejandro Garcia, P. Meurs, C. Van De Broeck Jan 2004

Rectification Of Thermal Fluctuations In Ideal Gases, Alejandro Garcia, P. Meurs, C. Van De Broeck

Alejandro Garcia

We calculate the systematic average speed of the adiabatic piston and a thermal Brownian motor, introduced by C. Van den Broeck, R. Kawai and P. Meurs [Phys. Rev. Lett. 93, 090601 (2004)], by an expansion of the Boltzmann equation and compare with the exact numerical solution.


Geminal Model Chemistry Ii. Perturbative Corrections, V. A. Rassolov, F. Xu, Sophya V. Garashchuk Jan 2004

Geminal Model Chemistry Ii. Perturbative Corrections, V. A. Rassolov, F. Xu, Sophya V. Garashchuk

Faculty Publications

We introduce and investigate a chemical model based on perturbative corrections to the product of singlet-type strongly orthogonal geminals wave function. Two specific points are addressed (i) Overall chemical accuracy of such a model with perturbative corrections at a leading order; (ii) Quality of strong orthogonality approximation of geminals in diverse chemical systems. We use the Epstein–Nesbet form of perturbation theory and show that its known shortcomings disappear when it is used with the reference Hamiltonian based on strongly orthogonal geminals. Application of this model to various chemical systems reveals that strongly orthogonal geminals are well suited for chemical models, …


Bohmian Dynamics On Subspaces Using Linearized Quantum Force, V. A. Rassolov, Sophya V. Garashchuk Jan 2004

Bohmian Dynamics On Subspaces Using Linearized Quantum Force, V. A. Rassolov, Sophya V. Garashchuk

Faculty Publications

In the de Broglie–Bohm formulation of quantum mechanics the time-dependent Schrödinger equation is solved in terms of quantum trajectories evolving under the influence of quantum and classical potentials. For a practical implementation that scales favorably with system size and is accurate for semiclassical systems, we use approximate quantum potentials. Recently, we have shown that optimization of the nonclassical component of the momentum operator in terms of fitting functions leads to the energy-conserving approximate quantum potential. In particular, linear fitting functions give the exact time evolution of a Gaussian wave packet in a locally quadratic potential and can describe the dominant …


Logical Pre- And Post-Selection Paradoxes, Measurement-Disturbance And Contextuality, Matthew S. Leifer, R. W. Spekkens Jan 2004

Logical Pre- And Post-Selection Paradoxes, Measurement-Disturbance And Contextuality, Matthew S. Leifer, R. W. Spekkens

Mathematics, Physics, and Computer Science Faculty Articles and Research

Many seemingly paradoxical effects are known in the predictions for outcomes of measurements made on pre- and post-selected quantum systems. A class of such effects, which we call “logical pre- and post-selection paradoxes”, bear a striking resemblance to proofs of the Bell-Kochen-Specker theorem, which suggests that they demonstrate the contextuality of quantum mechanics. Despite the apparent similarity, we show that such effects can occur in noncontextual hidden variable theories, provided measurements are allowed to disturb the values of the hidden variables.


Measuring Polynomial Invariants Of Multiparty Quantum States, Matthew S. Leifer, N. Linden, A. Winter Jan 2004

Measuring Polynomial Invariants Of Multiparty Quantum States, Matthew S. Leifer, N. Linden, A. Winter

Mathematics, Physics, and Computer Science Faculty Articles and Research

We present networks for directly estimating the polynomial invariants of multiparty quantum states under local transformations. The structure of these networks is closely related to the structure of the invariants themselves and this lends a physical interpretation to these otherwise abstract mathematical quantities. Specifically, our networks estimate the invariants under local unitary (LU) transformations and under stochastic local operations and classical communication (SLOCC). Our networks can estimate the LU invariants for multiparty states, where each party can have a Hilbert space of arbitrary dimension and the SLOCC invariants for multiqubit states. We analyze the statistical efficiency of our networks compared …


Bioinformatics: An Undergraduate Research/Teaching Tool., Abhishek Agrawal, Valgene L. Dunham Jan 2004

Bioinformatics: An Undergraduate Research/Teaching Tool., Abhishek Agrawal, Valgene L. Dunham

Journal of the South Carolina Academy of Science

No abstract provided.


Complete Angular Distribution Measurements Of Two-Body Deuteron Photodisintegration Between 0.5 And 3 Gev, H. Bagdasaryan, H. Bektasoglu, G. E. Dodge, T. A. Forest, C. E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, F. Sabatié, S. Stepanyan, L. B. Weinstein, J. Yun, Et Al., The Clas Collaboration Jan 2004

Complete Angular Distribution Measurements Of Two-Body Deuteron Photodisintegration Between 0.5 And 3 Gev, H. Bagdasaryan, H. Bektasoglu, G. E. Dodge, T. A. Forest, C. E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, F. Sabatié, S. Stepanyan, L. B. Weinstein, J. Yun, Et Al., The Clas Collaboration

Physics Faculty Publications

Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10°–160°. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.


Inclusive Photoproduction Of Lepton Pairs In The Parton Model, A. Psaker Jan 2004

Inclusive Photoproduction Of Lepton Pairs In The Parton Model, A. Psaker

Physics Faculty Publications

In the framework of the QCD parton model, we study unpolarized scattering of high energy real photons from a proton target into lepton pairs and a system of hadrons. For a given parametrization of parton distributions in the proton, we calculate the cross section of this process and show the cancellation of the interference terms.


Ultraviolet Sources For Advanced Applications In The Vacuum Uv And Near Uv, Sheng Peng Jan 2004

Ultraviolet Sources For Advanced Applications In The Vacuum Uv And Near Uv, Sheng Peng

Dissertations, Theses, and Masters Projects

This dissertation documents a systematic study consisting of experimental investigations and theoretical analyses of intense ultraviolet sources in VUV and near-UV. Some engineering issues regarding two prototypes of electrodeless lamps using rf and microwave are discussed.;Various excimers that produce intense UV light are investigated, including: (1) A benchmark Xe2 excimer which has been proven to be very efficient in our novel rf capacitively coupled discharge lamp; (2) A rarely studied excimer, KrI, which suffers from predissociation and was reported to be very weak or invisible by most of other studies; (3) XeI excimer whose emission dominates around 253 nm and …


Synthesis, Crystal Structure And Thermoelectric Properties Of Β-K2bi8se13 Solid Solutions, Theodora Kyratsi, Duck-Young Chung, Jeff Dyck, Ctirad Uher, Sangeeta Lal, Sim Loo, Tim Hogan, John Ireland, Carl Kannewurf, Evripides Hatzikraniotis, Konstantinos Paraskevopoulos, Mercouri Kanatzidis Dec 2003

Synthesis, Crystal Structure And Thermoelectric Properties Of Β-K2bi8se13 Solid Solutions, Theodora Kyratsi, Duck-Young Chung, Jeff Dyck, Ctirad Uher, Sangeeta Lal, Sim Loo, Tim Hogan, John Ireland, Carl Kannewurf, Evripides Hatzikraniotis, Konstantinos Paraskevopoulos, Mercouri Kanatzidis

Jeffrey Dyck

Solid solution series of the type K2Bi8-xSbxSe13, K2-xRbxBi8Se13 as well as K2Bi8Se13-xSx were prepared and the distribution of the atoms (Bi/Sb, K/Rb and Se/S) on different crystallographic sites, the band gaps and their thermoelectric properties were studied. The distribution Se/S appears to be more uniform than the distribution of the Sb and Rb atoms in the β-K2Bi8Se13 structure that shows preference in specific sites in the lattice. Band gap is mainly affected by Sb and S substitution. Seebeck coefficient measurements showed n-type character for of all Se/S members. In the Bi/Sb series an enhancement of p-type character was observed. The …