Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2004

Engineering

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 75

Full-Text Articles in Physics

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report September-December 2004, Denis Beller Dec 2004

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report September-December 2004, Denis Beller

Transmutation Sciences Physics (TRP)

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for near-complete destruction of waste isotopes from used nuclear fuel is accelerator driven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause a nuclear chain reaction in subcritical systems. Fission neutrons then transmute fissile waste isotopes as well as other problematic isotopes such as technetium-99 and iodine-129. To design these systems, complex …


Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report September-December 2004, Denis Beller Dec 2004

Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project: Quarterly Progress Report September-December 2004, Denis Beller

Transmutation Sciences Physics (TRP)

In the RACE Project of the U.S. Advanced Fuel Cycle Initiative (AFCI), a series of accelerator driven subcritical systems (ADSS) experiments will be conducted at the Idaho State University’s Idaho Accelerator Center (ISU-IAC), at the University of Texas (UT) at Austin, and at the Texas A&M University. In these experiments we will use electron accelerators to induce bremsstrahlung photon-neutron reactions in heavy-metal targets; this source of about 1012 to 1013 n/s will then initiate fission reactions in the subcritical systems. These systems will include a compact, transportable assembly at ISU and TRIGA reactors at UT-Austin and Texas A&M. …


Afci Quarterly Input – Unlv October Through December, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Dec 2004

Afci Quarterly Input – Unlv October Through December, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support. Management and program support highlights are the following: the UNLV TRP hosted the Eighth Annual IAEA Actinide and Fission Product Partitioning & Transmutation Information Exchange Meeting (Nov. 9 – 11). 120 people from 22 countries …


Niel Calculations For High-Energy Heavy Ions, John W. Wilson, I. Jun, M. A. Xapsos, E. A. Burke, F. F. Badavi, L. W. Townsend Dec 2004

Niel Calculations For High-Energy Heavy Ions, John W. Wilson, I. Jun, M. A. Xapsos, E. A. Burke, F. F. Badavi, L. W. Townsend

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

Calculations of NIEL are reported for heavy ions prominent in the space environment for energies ranging from 200 MeV per nucleon to 2 GeV per nucleon.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Oct 2004

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

Second task of the BGU part of “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project aims at evaluation of the fertile free fuel matrix composition effect on the fuel reactivity and corresponding reactivity limited burnup. Fertile free fuel with different MgO to ZrO2 ratio in the matrix will require different PuO2 loading in order to assure certain fuel cycle length. This is due to the fact that absorption cross section of Zr is slightly higher than that of Mg, although absorption in both of these elements is small compared to Pu. Therefore, the …


Achromatic Angle-Insensitive Infrared Quarter-Wave Retarder Based On Total Internal Reflection At The Si–Sio2 Interface, R. M.A. Azzam, Cristina L. Spinu Oct 2004

Achromatic Angle-Insensitive Infrared Quarter-Wave Retarder Based On Total Internal Reflection At The Si–Sio2 Interface, R. M.A. Azzam, Cristina L. Spinu

Electrical Engineering Faculty Publications

An achromatic infrared (λ = 1.2–4 μm), Si-prism quarter-wave retarder (QWR) is described that uses total internal reflection at a buried Si–SiO2 interface at an angle of incidence φ near 33°, where ∂Δ/∂φ = 0. The retardance Δ deviates from 90° by <±2° within a field of view of ±10° (in air) over the entire bandwidth. Because the SiO2 layer at the base of the prism is optically thick, this QWR is unaffected by environmental contamination.


Wide Angle Decentered Lens Beam Steering For Infrared Countermeasures Applications, Jennifer L. Gibson, Bradley D. Duncan, Edward A. Watson, John S. Loomis Oct 2004

Wide Angle Decentered Lens Beam Steering For Infrared Countermeasures Applications, Jennifer L. Gibson, Bradley D. Duncan, Edward A. Watson, John S. Loomis

Electro-Optics and Photonics Faculty Publications

A beam-steering system consisting of three cemented achromatic doublets is presented. Intended for use in IR countermeasure applications, our system is designed to operate over the 2- to 5-μm spectrum with minimum angular dispersion. We show that dispersion can be minimized by using doublet lenses fashioned from AMTIR-1 and germanium. Our system is designed to be compact and lightweight, with no internal foci, while allowing steering to ±22.5 deg. We also maintain a minimum 2-in. clear aperture for all steering angles, and a nominal divergence of 1 mrad. Plane wave and Gaussian beam analyses of our system are presented.


Lorentz-Violating Electrostatics And Magnetostatics, Quentin G. Bailey, V. Alan Kostelecký Oct 2004

Lorentz-Violating Electrostatics And Magnetostatics, Quentin G. Bailey, V. Alan Kostelecký

Publications

Electromagnetostatics experiments show promise for improving existing sensitivities to parity-odd coefficients for Lorentz violation in the photon sector.


Asymptotic Accuracy Of Geoacoustic Inversions, Michele Zanolin, Ian Ingram, Aaron Thode, Nicholas C. Makris Sep 2004

Asymptotic Accuracy Of Geoacoustic Inversions, Michele Zanolin, Ian Ingram, Aaron Thode, Nicholas C. Makris

Michele Zanolin

Criteria necessary to accurately estimate a set of unknown geoacoustic parameters from remote acoustic measurements are developed in order to aid the design of geoacoustic experiments. The approach is to have estimation error fall within a specified design threshold by adjusting controllable quantities such as experimental sample size or signal-to-noise ratio (SNR). This is done by computing conditions on sample size and SNR necessary for any estimate to have a variance that (1) asymptotically attains the Cramer–Rao lower bound (CRLB) and (2) has a CRLB that falls within the specified design error threshold. Applications to narrow band deterministic signals received …


Microscale Simulation Of Martensitic Microstructure Evolution, Valery I. Levitas, Alexander V. Idesman, Dean L. Preston Sep 2004

Microscale Simulation Of Martensitic Microstructure Evolution, Valery I. Levitas, Alexander V. Idesman, Dean L. Preston

Valery I. Levitas

A new model for the evolution of multivariant martensitic microstructure in single crystals and polycrystals is developed. In contrast with Landau-Ginzburg models, which are limited in practice to nanoscale specimens, this new scale-free model is valid for length scales greater than 100 nm and without an upper bound. It is based on a thermodynamic potential in the volume fractions of the martensitic variants that exhibits an instability resulting in microstructure formation. Simulated microstructures in elastic single crystals and polycrystals under uniaxial loading are in qualitative agreement with those observed experimentally.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Sep 2004

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

This progress report presents results of analysis performed within the framework of “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project managed by University of Nevada at Las Vegas, Harry Reid Center for Environmental Studies.

The BGU working program includes the following four tasks:

1. Benchmark of computational tools

2. Determination of fissile Pu loading

3. Evaluation of burnable poison designs

4. Evaluation of reactivity feedback coefficients

This progress report presents the results of Task 1. The main objective of this task is to confirm the validity of the ELCOS 1 code system for inert matrix …


Afci Quarterly Input – Unlv July Through September, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Sep 2004

Afci Quarterly Input – Unlv July Through September, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Map Estimation For Hyperspectral Image Resolution Enhancement Using An Auxiliary Sensor, Russell C. Hardie, Michael T. Eismann, Gregory L. Wilson Sep 2004

Map Estimation For Hyperspectral Image Resolution Enhancement Using An Auxiliary Sensor, Russell C. Hardie, Michael T. Eismann, Gregory L. Wilson

Electrical and Computer Engineering Faculty Publications

This paper presents a novel maximum a posteriori (MAP) estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here we focus on the use of high-resolution panchomatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important …


Volume Holographic Recording And Readout For 90-Deg Geometry, Partha P. Banerjee, Monish Ranjan Chatterjee, Nickolai Kukhtarev, Tatiana Kukhtareva Sep 2004

Volume Holographic Recording And Readout For 90-Deg Geometry, Partha P. Banerjee, Monish Ranjan Chatterjee, Nickolai Kukhtarev, Tatiana Kukhtareva

Electrical and Computer Engineering Faculty Publications

When a prerecorded cross-beam hologram is reconstructed (so-called edge-lit readout) with a uniform plane wave and a point source, the resulting exact solutions reveal Bessel-function-type diffracted beam profiles, which are fundamentally modified under weak propagational diffraction. The case of a profiled beam readout with propagational diffraction may be analyzed using a transfer function approach based on 2-D Laplace transforms. In a second series of investigations, dynamic readout from a cross-beam volume hologram recorded with two orthogonal uniform plane waves is considered for various dependences of the refractive index modulation with intensity. Typically, refractive index profiles that are proportional to the …


Volume Holographic Optical Elements, Ching-Cherng Sun, Partha P. Banerjee Sep 2004

Volume Holographic Optical Elements, Ching-Cherng Sun, Partha P. Banerjee

Electrical and Computer Engineering Faculty Publications

The final two papers are concerned with the analysis of novel holograms. Banerjee et al. investigate holographic recording and reconstruction for edge-lit holograms recorded in a 90-degree geometry. Various cases of recording and readout that incorporate propagational diffraction have been modeled. It is shown that the 90-degree geometry can result in beam shaping, as evidenced through preliminary experimental results with photorefractive lithium niobate. Nguyen et al. propose a new approach for designing computer-generated holograms. An artificial neural network is used to initiate the genetic algorithm so that the high computation cost of genetic algorithms for synthesizing holograms is significantly reduced …


Immunogold Labeling To Enhance Contrast In Optical Coherence Microscopy Of Tissue Engineered Corneal Constructs, Chris B. Raub, Elizabeth J. Orwin, Richard C. Haskell Sep 2004

Immunogold Labeling To Enhance Contrast In Optical Coherence Microscopy Of Tissue Engineered Corneal Constructs, Chris B. Raub, Elizabeth J. Orwin, Richard C. Haskell

All HMC Faculty Publications and Research

Our lab has used an optical coherence microscope (OCM) to assess both the structure of tissue-engineered corneal constructs and their transparency. Currently, we are not able to resolve cells versus collagen matrix material in the images produced. We would like to distinguish cells in order to determine if they are viable while growing in culture and also if they are significantly contributing to the light scattering in the tissue. In order to do this, we are currently investigating the use of immunogold labeling. Gold nanoparticles are high scatterers and can create contrast in images. We have conjugated gold nanoparticles to …


Mechanical Properties Of Carbon Nanotubes Composites, David Hui, Mircea Chipara, Jagannathan Sankar, K. T. Lau Sep 2004

Mechanical Properties Of Carbon Nanotubes Composites, David Hui, Mircea Chipara, Jagannathan Sankar, K. T. Lau

Physics and Astronomy Faculty Publications and Presentations

A critical review of theoretical models aiming to explain the physical properties of composites based on polymeric matrices reinforced with carbon nanotubes is presented. Attention is paid to descriptions based on molecular dynamics, continuum mechanics, and finite element analysis. It is shown that both the continuum mechanics approximation and the finite size element analyses fail to describe composites with very thin interfaces, while the performances of molecular dynamics simulations are still restricted by computer's performances. The limitations of the continuum mechanics approximation are analyzed in detail.


Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report June-August 2004, Denis Beller Aug 2004

Neutron Multiplicity Measurements For The Afci Program Quarterly Progress Report June-August 2004, Denis Beller

Transmutation Sciences Physics (TRP)

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for near-complete destruction of waste isotopes from used nuclear fuel is acceleratordriven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause a nuclear chain reaction in subcritical systems. Fission neutrons then transmute fissile waste isotopes as well as other problematic isotopes such as technetium-99 and iodine-129. To design these systems, complex reactor …


Phase Shifts That Accompany Total Internal Reflection At A Dielectric–Dielectric Interface, R. M.A. Azzam Aug 2004

Phase Shifts That Accompany Total Internal Reflection At A Dielectric–Dielectric Interface, R. M.A. Azzam

Electrical Engineering Faculty Publications

The absolute, average, and differential phase shifts that p- and s-polarized light experience in total internal reflection (TIR) at the planar interface between two transparent media are considered as functions of the angle of incidence φ. Special angles at which quarter-wave phase shifts are achieved are determined as functions of the relative refractive index N. When the average phase shift equals π/2, the differential reflection phase shift Δ is maximum, and the reflection Jones matrix assumes a simple form. For N>√3, the average and differential phase shifts are equal (hence δp=3δs) at …


46th Rocky Mountain Conference On Analytical Chemistry Aug 2004

46th Rocky Mountain Conference On Analytical Chemistry

Rocky Mountain Conference on Magnetic Resonance

Final program, abstracts, and information about the 46th annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-endorsed by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Denver, Colorado, August 1-5, 2004.


Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project, Denis Beller Jul 2004

Reactor Physics Studies For The Afci Race Project: Reactor-Accelerator Coupling Experiments Project, Denis Beller

Transmutation Sciences Physics (TRP)

In the RACE Project of the U.S. Advanced Fuel Cycle Initiative (AFCI), a series of accelerator driven subcritical systems (ADSS) experiments will be conducted at the Idaho State University’s Idaho Accelerator Center (ISU-IAC), at the University of Texas (UT) at Austin, and at the Texas A&M University. In these experiments we will use electron accelerators to induce bremsstrahlung photon-neutron reactions in heavy-metal targets; this source of about 1012 to 1013 n/s will then initiate fission reactions in the subcritical systems. These systems will include a compact, transportable assembly at ISU and TRIGA reactors at UT-Austin and Texas A&M. …


Spectroscopic And Microscopic Investigation Of The Corrosion Of 316/316l Stainless Steel By Lead-Bismuth Eutectic (Lbe) At Elevated Temperatures: Importance Of Surface Preparation, Allen L. Johnson, Denise Parsons, Julia Manzerova, Dale L. Perry, Daniel Koury, Brian D. Hosterman, John Farley Jul 2004

Spectroscopic And Microscopic Investigation Of The Corrosion Of 316/316l Stainless Steel By Lead-Bismuth Eutectic (Lbe) At Elevated Temperatures: Importance Of Surface Preparation, Allen L. Johnson, Denise Parsons, Julia Manzerova, Dale L. Perry, Daniel Koury, Brian D. Hosterman, John Farley

Transmutation Sciences Materials (TRP)

The corrosion of steel by lead–bismuth eutectic (LBE) is an important issue in proposed nuclear transmutation schemes. Russian scientists at the IPPE exposed steel samples to oxygen-controlled LBE at temperatures up to 823 K and exposure times up to 3000 h. We have characterized these post-exposure steel samples and unexposed controls, using scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS). Previous researchers have investigated the corrosion by LBE of steel of varying composition. In the present work, we compared two samples having the same composition (standard nuclear grade 316/316L) but different surface preparation: a cold-rolled …


Dynamical Studies Of Model Membrane And Cellular Response To Nanosecond, High-Intensity Pulsed Electric Fields, Qin Hu Jul 2004

Dynamical Studies Of Model Membrane And Cellular Response To Nanosecond, High-Intensity Pulsed Electric Fields, Qin Hu

Electrical & Computer Engineering Theses & Dissertations

The dynamics of electroporation of biological cells subjected to nanosecond, high intensity pulses are studied based on a coupled scheme involving the current continuity and Smoluchowski equations. The improved pore formation energy model includes a dependence on pore population and density. It also allows for variable surface tension and incorporates the effects of finite conductivity on the electrostatic correction term, which was not considered by the simple energy models in the literature. It is shown that E(r) becomes self-adjusting with variations in its magnitude and profile. The whole scheme is self-consistent and dynamic.

An electromechanical analysis based on thin-shell theory …


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Randy Clarksean, Darrell Pepper Jun 2004

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Randy Clarksean, Darrell Pepper

Fuels Campaign (TRP)

After considering the heating mechanisms, casting issues, crucible design and issues related to the mass transport of americium, an ISM system was selected for melting the feedstock and casting fuel pins containing high vapor pressure actinides (americium). The finite element commercial software (FIDAP) was used to simulate the induction melting process and the casting process. Phase change is considered both in the heating and in the solidification process. Various factors and properties are studied, such as boundary conditions and initial conditions, output current, frequency of the current, main dimensions of the system, mold preheating temperature, heat transfer coefficient and mold …


Reliable First-Principles Alloy Thermodynamics Via Truncated Cluster Expansions, Nikolai A. Zarkevich, Duane D. Johnson Jun 2004

Reliable First-Principles Alloy Thermodynamics Via Truncated Cluster Expansions, Nikolai A. Zarkevich, Duane D. Johnson

Nikolai A. Zarkevich

In alloys cluster expansions (CE) are increasingly used to combine first-principles electronicstructure calculations and Monte Carlo methods to predict thermodynamic properties. As a basis-set expansion in terms of lattice geometrical clusters and effective cluster interactions, the CE is exact if infinite, but is tractable only if truncated. Yet until now a truncation procedure was not well defined and did not guarantee a reliable truncated CE. We present an optimal truncation procedure for CE basis sets that provides reliable thermodynamics. We then exemplify its importance in Ni3V, where the CE has failed unpredictably, and now show agreement to a range of …


Afci Quarterly Input – Unlv April Through June, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Jun 2004

Afci Quarterly Input – Unlv April Through June, 2004, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Interferometric And Holographic Imaging Of Surface-Breaking Cracks, James Lawrence Blackshire, Bradley D. Duncan Jun 2004

Interferometric And Holographic Imaging Of Surface-Breaking Cracks, James Lawrence Blackshire, Bradley D. Duncan

Electro-Optics and Photonics Faculty Publications

Two advanced nondestructive evaluation systems are developed for imaging surface-breaking cracks in aerospace materials. The systems use scanning heterodyne interferometry and frequency-translated holography principles to image ultrasonic displacement fields on material surfaces with high resolution and sensitivity. Surface-breaking cracks are detected and characterized by visualizing near-field ultrasonic scattering processes, which in turn results in local intensification of ultrasonic displacement fields in the immediate vicinity of a crack. The local intensification permits cracks to be easily distinguished from background levels, and creates unique displacement field images that follow the contours and morphology of the cracks with microscopic precision. The interferometric and …


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing, Georg F. Mauer May 2004

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing, Georg F. Mauer

Fuels Campaign (TRP)

This proposal addresses the subject heading ‘Transmutation Fuel Development’ in the 2004 research topic list of the UNLV Transmutation Research Program (TRP) and DOE Advanced Fuel Cycle Initiative (AFCI). The large-scale deployment of remote fabrication and refabrication processes (with a capacity of approx. 100 metric tons of Minor Actinides (MA) annually) will be required for all transmutation scenarios. The objective of this project is the design, analysis, and evaluation of manufacturing processes for transmuter fuel fabrication. Fabrication processes for different fuel types differ in terms of equipment types, throughput, and cost. The evaluation of the fabrication processes will create a …


Growth And Transport Properties Of Complementary Germanium Nanowire Field Effect Transistors, Andrew B. Greytak, Lincoln J. Lauhon, Mark S. Gudiksen, Charles M. Lieber May 2004

Growth And Transport Properties Of Complementary Germanium Nanowire Field Effect Transistors, Andrew B. Greytak, Lincoln J. Lauhon, Mark S. Gudiksen, Charles M. Lieber

Faculty Publications

n- and p-type Ge nanowires were synthesized by a multistep process in which axial elongation, via vapor–liquid–solid (VLS) growth, and doping were accomplished in separate chemical vapor deposition steps. Intrinsic, single-crystal, Ge nanowires prepared by Au nanocluster-mediated VLS growth were surface-doped in situ using diborane or phosphine, and then radial growth of an epitaxial Ge shell was used to cap the dopant layer. Field-effect transistors prepared from these Ge nanowires exhibited on currents and transconductances up to 850 µA/µm and 4.9 µA/V, respectively, with device yields of >85%.


Design And Simulation Of An Induction Skull Melting System, Taide Tan May 2004

Design And Simulation Of An Induction Skull Melting System, Taide Tan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Incorporating volatile actinides, mainly americium into a metallic fuel pin (MFP) has been a serious problem due to americium’s high vapor pressure. An Induction Skull Melting (ISM) system was identified by Argonne National Laboratory (ANL) as a potential furnace design to cast MFPs. Through the development of the ISM system, the nuclear waste feedstock can be melted and injected into the mold for fabricating MFPs in the advanced nuclear fuel cycles. The main phenomena in this system include: induction melting process, casting process and mass transfer process of americium. Issues related to ISM system design for casting MFPs are discussed …