Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Central Florida

Discipline
Keyword
Publication Year
Publication

Articles 31 - 60 of 575

Full-Text Articles in Physics

Heterogenous Reduction Of Co2 Over Boron-Rich Alb2, Jose C. Berger Jan 2022

Heterogenous Reduction Of Co2 Over Boron-Rich Alb2, Jose C. Berger

Honors Undergraduate Theses

Evidence suggests that the recent drastic changes in the global climate have been caused by greenhouse gases, especially CO­2. As a result, scientists are aiming to develop processes that either minimize the production of these gases or convert them into products of higher value. To that end, the catalytic properties of a two-dimensional boron-rich material were investigated. Herein is reported that such a material can reduce CO2 into benzene, C3 species, and C4 species at relatively low temperatures (225-450 ℃) and pressures (0.38 MPa). Current data suggest that a low-temperature induction period (e.g., 225 ℃) …


Compact Lens Technologies: Curved Image Sensor And Volumetric Imaging Efficiency, Zhao Ma Jan 2022

Compact Lens Technologies: Curved Image Sensor And Volumetric Imaging Efficiency, Zhao Ma

Electronic Theses and Dissertations, 2020-

Compact image systems bring up people's attention in the field of target recognition, surveillance, situation awareness or even photography. Conventional metrics assess image system based on image quality without considering systems' volume. More comprehensive metrics, such as General Image-Quality Equation and the Targeting Task Performance metric, incorporates all image system components from object, lenses to detector and even imaging processing algorithm. All these key factors prohibit these metrics from being applied to image system in a convenient manner. Here, we propose a simple metric, volumetric imaging efficiency, considering both image quality and volume. Only concentrate on optical lenses enables the …


Volume Bragg Gratings With Complex Phase Structures: A Three-Dimensional Foundation For Laser-Beam Engineering, Lam Mach Jan 2022

Volume Bragg Gratings With Complex Phase Structures: A Three-Dimensional Foundation For Laser-Beam Engineering, Lam Mach

Electronic Theses and Dissertations, 2020-

Bragg diffraction is a natural phenomenon that arises from the coherent interference of scattered waves in multilayer structures with a well-defined periodicity. In practice, the physical size of these multilayer structures varies depending on the intended application, from micrometer-thick dielectric mirrors with tens of layers to centimeter-long Bragg gratings with ten-thousands of layers. The scope of this work centers around a unique class of multilayer elements developed in bulk photo-thermo-refractive (PTR) glass – the volume Bragg grating (VBG). The content of this thesis places an emphasis on the volume nature of these Bragg devices, implying a three-dimensional structure whereupon arbitrary …


Design Of A High-Power Terahertz Emitter Array Using A High-Temperature Superconductor, Ruqayyah Shouk Jan 2022

Design Of A High-Power Terahertz Emitter Array Using A High-Temperature Superconductor, Ruqayyah Shouk

Electronic Theses and Dissertations, 2020-

By applying a dc voltage V across the stack of intrinsic Josephson junctions naturally present in the high-temperature superconductor consisting of two parts bismuth, two parts strontium, one part calcium, two parts copper, and a bit more than eight parts oxygen, several groups have been able to obtain coherent THz emission at output powers in the µW range. In order to enhance the output power well into the mW range suitable for many applications, we have studied a compact design of a stand-alone mesa array with gold layers on the top and bottom of the superconductor. In this design, an …


Terahertz Spintronics With Antiferromagnetic Insulators, Gyan Khatri Jan 2022

Terahertz Spintronics With Antiferromagnetic Insulators, Gyan Khatri

Electronic Theses and Dissertations, 2020-

The existence of the THz gap in the electromagnetic spectrum is not only preventing the advancement of several technologies but also hindering research and developmental activities due to a lack of research facilities operating in the gap region. There is a plethora of materials with dynamics lying in the THz gap region whose study could potentially lead to the development of new technologies for the generation, detection, and processing of THz signals. Antiferromagnets are gaining recent interest due to their high frequency dynamics lying in the THz region, and their potential uses as active elements in THz spintronics devices have …


Characterizing The Particle Size Distribution In Saturn's Rings Using Cassini Uvis Stellar Occultation Data, Stephanie Eckert Jan 2022

Characterizing The Particle Size Distribution In Saturn's Rings Using Cassini Uvis Stellar Occultation Data, Stephanie Eckert

Electronic Theses and Dissertations, 2020-

NASA's Cassini mission to Saturn revolutionized modern understanding of the planet's vast and intricate ring system. We use stellar occultation data from Cassini's UVIS High Speed Photometer (HSP) to characterize the particle size distribution in the rings with two methods. First, we discern the sizes of the smallest particles at ring edges by forward-modeling observed diffraction signatures which appear as spikes in the signal, the shape and amplitude of which depends on the size and abundance of the smallest particles. We then probe the upper end of the size distribution using occultation statistics. Although the distribution of photon counts in …


Optimization-Based Approaches To Low-Coherence Optical Diffraction Tomography, Seth Smith-Dryden Jan 2022

Optimization-Based Approaches To Low-Coherence Optical Diffraction Tomography, Seth Smith-Dryden

Electronic Theses and Dissertations, 2020-

Quantitative optical phase imaging techniques, such as optical diffraction tomography (ODT), are useful tools for refractive-index profiling. Many of them, however, rely on the weak-scattering assumptions, thus cannot be applied to multiple-scattering objects, or turbid media. In this thesis, I report several approaches for expanding the efficacy of ODT techniques and adapting them to new applications by use of low-coherence broadband illumination. First, I developed a method for ODT reconstruction using regularized convex optimization with a new phase-based fidelity criterion. The new criterion is necessary because objects with very different refractive-index distributions may produce similar diffracted fields (magnitude and principal-phase) …


Third Order Nonlinear Optics In Solids, Nicholas Cox Jan 2022

Third Order Nonlinear Optics In Solids, Nicholas Cox

Electronic Theses and Dissertations, 2020-

Nonlinear optical effects occur when strong electromagnetic waves induce changes in a medium that affect its own propagation or that of another wave. Third order optical nonlinearities scale linearly with irradiance and lead to effects like two-photon absorption and nonlinear refraction. This work focuses on the experimental and theoretical study of two-photon absorption in crystalline solids. We begin by detailing the quantum mechanical states of electrons in solids along with the computational approaches to calculate their band structure. Next, a theoretical model for the linear and nonlinear optical interaction of light with matter is presented in a many-body formalism. This …


Diffractive Liquid Crystal Optical Elements For Near-Eye Displays, Jianghao Xiong Jan 2022

Diffractive Liquid Crystal Optical Elements For Near-Eye Displays, Jianghao Xiong

Electronic Theses and Dissertations, 2020-

Liquid crystal planar optics (LCPO) with versatile functionalities is emerging as a promising candidate for overcoming various challenges in near-eye displays, like augmented reality (AR) and virtual reality (VR), while maintaining a small form factor. This type of novel optical element exhibits unique properties, such as high efficiency, large angular/spectral bandwidths, polarization selectivity, and dynamic modulation. The basic molecular configuration of these novel reflective LCPO is analyzed, based on the simulation of molecular dynamics. In contrast to previously assumed planar-twist structure, our analysis predicts a slanted helix structure, which agrees with the measured results. The optical simulation model is established …


Patterned Liquid Crystal Devices For Near-Eye Displays, Kun Yin Jan 2022

Patterned Liquid Crystal Devices For Near-Eye Displays, Kun Yin

Electronic Theses and Dissertations, 2020-

As a promising next-generation display, augmented reality (AR) and virtual reality (VR) have shown attractive features and attracted broad interests from both academia and industry. Currently, these near-eye displays (NEDs) have enabled numerous applications, ranging from education, medical, entertainment, to engineering, with the help of compact and functional patterned liquid crystal (LC) devices. The interplay between LC patterns and NEDs stimulates the development of novel LC devices with unique surface alignments and volume structures, which in turn feedback to achieve more compact and versatile NEDs. This dissertation will focus on the patterned LC with applications in NEDs. Firstly, we propose …


First And Third Order Susceptibility Of Organic Molecules, Hao-Jung Chang Jan 2022

First And Third Order Susceptibility Of Organic Molecules, Hao-Jung Chang

Electronic Theses and Dissertations, 2020-

Illuminating a material with intense laser excitation may change its properties and result in nonlinear absorption (NLA) and nonlinear refraction (NLR). In this dissertation we study the nonlinear absorption of organic compounds, the effect of extremely nondegenerate NLR in semiconductors, and the linear refractive index of organic solvents. In liquids, the refractive index has been studied for decades and different kinds of refractometers have been proposed. However, most of the reported values are in the visible region and only for commonly used solvents. We proposed a new interferometer-based refractometer that allows us to measure the refractive index from the visible …


Wavelet Particle Hydrodynamics For Less Smooth Flow, Oddny Brun Dec 2021

Wavelet Particle Hydrodynamics For Less Smooth Flow, Oddny Brun

Electronic Theses and Dissertations, 2020-

The purpose of this research was to improve the smoothing operation in smoothed particle hydrodynamics, SPH, when the flow of matter is not smooth. Our main focuses are on the kernel selection, identifying the discontinuities in the sequences to be smoothed, and use of the Laplacian as opposed to artificial viscosity for improved physical accuracy. The results show that alternative kernels result in differences in how matter flows. These effects are explained by the kernels' gradient and Laplacian properties. Five alternative kernels were included in our analysis and our SPH-based simulation cases. Further, the sequences to be smoothed by the …


Nonlinear Light-Matter Interactions In Novel Crystals For Broadband Mid-Infrared Generation, Taiki Kawamori Dec 2021

Nonlinear Light-Matter Interactions In Novel Crystals For Broadband Mid-Infrared Generation, Taiki Kawamori

Electronic Theses and Dissertations, 2020-

Mid-infrared (MIR) laser sources have demonstrated diverse applications in science and technology. For spectroscopy applications, numerous molecules have unique absorption features in this range, and one needs a spectrally broad coherent laser source for parallel detection of mixtures of species. Frequency down-conversion in nonlinear optical materials via second-order nonlinear susceptibility is one of the promising techniques to generate the spectral coverage of more than an octave in the MIR, assisted by emerging novel crystals. The nonlinear light-matter interactions in such special crystals as ZnSe ceramics have not been analyzed. Additionally, through the use of high-intensity few-cycle optical pulses, high-order nonlinear …


High Spectral Brightness, Broad Area Quantum Cascade Lasers, Enrique Sanchez Cristobal Dec 2021

High Spectral Brightness, Broad Area Quantum Cascade Lasers, Enrique Sanchez Cristobal

Electronic Theses and Dissertations, 2020-

Quantum cascade lasers are unipolar semiconductor lasers that offer a unique combination of compact size, high efficiency, high optical power, and flexibility to achieve a targeted emission wavelength with the same laser core material composition, employing so-called bandgap engineering. Since their invention in 1994, watt-level CW power with 5 to 20 % wallplug efficiency was demonstrated for QCLs throughout the entire 4 to 12 µm range, which makes QCLs very attractive for a number of practical applications. Our earlier work on broad-area QCLs emitting in the 4.6 µm to 5.7 µm spectral range demonstrated that CW power scaling with lateral …


Spectral Dependence Of Deep Subwavelength Metallic Apertures In The Mid-Wave Infrared, Heath Gemar Dec 2021

Spectral Dependence Of Deep Subwavelength Metallic Apertures In The Mid-Wave Infrared, Heath Gemar

Electronic Theses and Dissertations, 2020-

For two decades, extraordinary optical transmission (EOT) has amplified exploration into subwavelength systems. Researchers have previously suggested exploiting the spectrally selective electromagnetic field confinement of subwavelength cavities for multispectral detectors. Utilizing the finite-difference frequency domain (FDFD) method, we examine electromagnetic field confinement in both 2-dimensional and 3-dimensional scenarios from 2.5 to 6 microns (i.e., mid-wave infrared or MWIR). We explore the trade space of deep subwavelength cavities and its impact on resonant enhancement of the electromagnetic field. The studies provide fundamental understanding of the coupling mechanisms allowing for prediction of resonant spectral behavior based on cavity geometry and material properties. …


Optimizing Mixed Reality Simulation To Support Stem Graduate Teaching Assistants In Developing Student-Centered Pedagogical Skills, Constance Doty Dec 2021

Optimizing Mixed Reality Simulation To Support Stem Graduate Teaching Assistants In Developing Student-Centered Pedagogical Skills, Constance Doty

Electronic Theses and Dissertations, 2020-

Physics graduate teaching assistants (GTA) often instruct student-centered lab and recitation sections at large universities, creating the opportunity to positively impact students. However, as STEM GTA professional development varies by institution and discipline, GTAs rarely receive feedback about their teaching. In K-12 teacher preparation, "microteaching", where a teacher teaches a lesson to peers acting as students, is used to provide feedback. Research has demonstrated benefits to microteaching in K-12 teacher and STEM GTA preparation, but practicing teachers find microteaching can lack authenticity. Recently, researchers have explored integrating technology, like simulation, in pedagogy training to provide a more authentic training experience. …


Novel Optical Frequency Combs Injection Locking Architectures, Ricardo Bustos Ramirez May 2021

Novel Optical Frequency Combs Injection Locking Architectures, Ricardo Bustos Ramirez

Electronic Theses and Dissertations, 2020-

Due to their highly stable timing characteristics, optical frequency combs have become instrumental in applications ranging from spectroscopy to ultra-wideband optical interconnects, high-speed signal processing, and exoplanet search. In the past few years, there has been a necessity for frequency combs to become more compact, robust to environmental disturbances, and extremely energy efficient, where photonic integration shows a clear pathway to bring optical frequency combs to satellites, airships, drones, cars, and even smartphones. Therefore, the development of chip-scale optical frequency combs has become a topic of high interest in the optics community. This dissertation reviews the work made in the …


The Physics Of Nanoaperture Optical Traps: Design, Fabrication And Experimentation, Chenyi Zhang May 2021

The Physics Of Nanoaperture Optical Traps: Design, Fabrication And Experimentation, Chenyi Zhang

Electronic Theses and Dissertations, 2020-

Recent progress in nano optics, spurred by progress in nanofabrication, has allowed us to overcome these challenges. We use surface plasmon polaritons to break the optical diffraction limit and squeeze the photon energy into a local hot spot. The small mode volume of a plasmonic antenna or nanoaperature significantly enhances the local field and can be designed to resonate at a desired wavelength. By designing, fabricating, and testing these nanoapertures, I trap single nanoparticles with significantly reduced laser power by measuring the monochromatic transmission change of a resonant aperture. A freely diffused nanoparticle, behaving like a dipole antenna, interacts with …


Exploring New Materials As Promising Electrocatalysts For The Generation Of A Clean And Renewable Energy Source, Tyler Campbell Jan 2021

Exploring New Materials As Promising Electrocatalysts For The Generation Of A Clean And Renewable Energy Source, Tyler Campbell

Electronic Theses and Dissertations, 2020-

This work presents the research of myself, my advising professor, and our collaborators in first-principles studies of several catalytic materials for improving the efficiency and economics of hydrogen fuel cells, focusing on the oxygen reduction reaction (ORR) at the cathode, CO removal and the hydrogen oxidation reaction (HOR) at the anode, and the redox reactions used for water splitting through photocatalysis. We use a computational design approach to analyze the reaction thermodynamics, applying density functional theory (DFT) for most calculations. We find that, through a subversion of the linear scaling approximation for surface reactivity, an Au monolayer deposited on the …


Development Of Quantitative Intensity-Based Single-Molecule Assays, Benjamin Croop Jan 2021

Development Of Quantitative Intensity-Based Single-Molecule Assays, Benjamin Croop

Electronic Theses and Dissertations, 2020-

Fluorescence microscopy has emerged as a popular and powerful tool within biology research, owing to its exceptional signal contrast, specificity, and the versatility of the various microscope designs. Fluorescence microscopy has been used to study samples across orders of magnitude in physical scale ranging from tissues to cells, down to single-molecules, and as such has led to breakthroughs and new knowledge in a wide variety of research areas. In particular, single-molecule techniques are somewhat unique in their ability to study biomolecules in their native state, which enables the visualization of short-lived interactions and rare events which can be highly relevant …


Directional Link Management Using In-Band Full-Duplex Free Space Optical Transceivers For Aerial Nodes, A F M Saniul Haq Jan 2021

Directional Link Management Using In-Band Full-Duplex Free Space Optical Transceivers For Aerial Nodes, A F M Saniul Haq

Electronic Theses and Dissertations, 2020-

Free-space optical (FSO) communication has become very popular for wireless applications to complement and, in some cases, replace legacy radio-frequency for advantages like unlicensed band, spatial reuse, and enhanced security. Even though FSO can achieve very high bit-rate (tens of Gbps), range limitation due to high attenuation and weather dependency has always restricted its practical implementation to indoor application like data centers and outdoor application like Project Loon. Building-to-building communication, smart cars, and airborne drones are potential futuristic wireless communication sectors for mobile ad-hoc FSO networking. Increasing social media usage demands high-speed mobile connectivity for applications like video call and …


Enhancement And Evaluation Of Proton Pencil Beam Spot Placement Algorithms, Mahboob Ur Rehman Jan 2021

Enhancement And Evaluation Of Proton Pencil Beam Spot Placement Algorithms, Mahboob Ur Rehman

Electronic Theses and Dissertations, 2020-

Intensity modulated proton therapy (IMPT) in the form of pencil beam scanning (PBS) has shown improvement in treatment plan quality as compared to conventional proton and photon-based radiotherapy techniques. However, in IMPT maintaining a sharp lateral dose falloff is crucial for sparing organs at risk (OARs), especially when they are in close proximity to the target volume. The most common approach to improve lateral dose falloff is through the use of physical beam shaping devices, such as brass apertures or collimator-based systems. This work has shown that IMPT can be further improved by implementation of advanced spot placement techniques by …


Biophysical Analysis Of The Structure And Aggregation Of Amyloid Beta Peptide, Faisal Abedin Jan 2021

Biophysical Analysis Of The Structure And Aggregation Of Amyloid Beta Peptide, Faisal Abedin

Electronic Theses and Dissertations, 2020-

Alzheimer's disease (AD) is the major cause of dementia and is characterized by neuronal death and brain atrophy. The amyloid ß (Aß) peptide is tightly associated with neuronal dysfunction during AD, but the molecular mechanism underlying the neurotoxic effect of Aß is poorly understood. Extracellular fibrillar deposits (plaques) of Aß were initially believed to be the cause of AD, but currently there is overwhelming evidence that the prefibrillar Aß oligomers are the major toxic entities. Structural characterization of Aß oligomers and fibrils is important for understanding the structural features determining the toxic potency of the peptide. This project has studied …


Qualitative Reconceptualizations Of Success In Physics From A Feminist Lens, Brian Zamarripa Roman Jan 2021

Qualitative Reconceptualizations Of Success In Physics From A Feminist Lens, Brian Zamarripa Roman

Electronic Theses and Dissertations, 2020-

To address the critical issue of the underrepresentation of women in physics, the Physics Education Research community has focused on exploring the factors contributing to student success; however, few studies have explored the meaning of success in physics as seen by women and other marginalized populations. This study, guided by Feminist Standpoint Theory and Critical Race Nepantlera Methodologies, incorporates qualitative methods to explore the central question, "how do women in physics conceptualize the meaning of success in physics?" We begin with an analysis of metaphors of success in physics constructed by nine women studying physics at a single institution, followed …


Topology And Megnetism In F-Electron Systems, Firoza Kabir Jan 2021

Topology And Megnetism In F-Electron Systems, Firoza Kabir

Electronic Theses and Dissertations, 2020-

Topological insulators are insulators in the bulk but permit spin-polarized electrons to flow on their surface. Till date, non-magnetic topological materials have been extensively studied. However, due to the complex symmetries of magnetic crystals as well as theoretical and experimental difficulties associated with modeling and measuring quantum magnets, only a few magnetic materials have been explored so far. Therefore, by utilizing angle-resolved photoemission spectroscopy (ARPES), along with first-principles calculations, and magneto-transport measurements, we have chosen one doped and four intrinsic magnetic materials to study the interplay between magnetic order and nontrivial topology. First, we have observed a single topological non-trivial …


Liquid Crystal Flat Optics For Near-Eye Displays, Tao Zhan Jan 2021

Liquid Crystal Flat Optics For Near-Eye Displays, Tao Zhan

Electronic Theses and Dissertations, 2020-

Augmented reality (AR) and virtual reality (VR) displays, considered as the next-generation information platform, have shown great potential to revolutionize the way how we interact with each other and the digital world. Both AR and VR are disruptive technologies that can enable numerous applications in education, healthcare, design, training, entertainment, and engineering. Among all the building blocks of these emerging devices, near-eye displays (NEDs) play a critical role in the entire system, through which we can perceive the virtual world as the real one. However, the visual experience offered by existing NED technologies is still far from satisfying the human …


Structure Of Unmodified And Pyroglutamylated Amyloid Beta Peptide In Lipid Membranes, Rowan Hassan Jan 2021

Structure Of Unmodified And Pyroglutamylated Amyloid Beta Peptide In Lipid Membranes, Rowan Hassan

Honors Undergraduate Theses

Alzheimer's Disease (AD) is a devastating neurodegenerative disease that is characterized by brain atrophy, neuronal and synaptic loss, cognitive decline, trouble handling activities of daily life, and ultimately leads to death. Worldwide, at least 30 million people suffer from AD, with 5.8 million suffering in the US alone. Despite extensive basic and clinical research, the underlying molecular mechanisms behind AD remain largely unknown. There are four FDA-approved compounds are used for alleviating symptoms but have no curative potency. The first potentially disease-modifying AD drug, aducanumb, was approved by FDA in June 2021. The main histopathological traits of AD are the …


Photoemission Investigation Of Topological Quantum Materials, Klauss M. Dimitri Jan 2021

Photoemission Investigation Of Topological Quantum Materials, Klauss M. Dimitri

Honors Undergraduate Theses

Topological insulators (TIs) are a class of quantum materials, which behave as insulators in the bulk, yet possess gapless spin-polarized surface states, which are robust against nonmagnetic impurities. The unique properties of TIs make them attractive not only for studying various fundamental phenomena in condensed matter and particle physics, but also as promising candidates for applications ranging from spintronics to quantum computation. Within the topological insulator realm, a great deal of focus has been placed on discovering new quantum materials, however, ideal multi-modal quantum materials have yet to be found. Here we study alpha-PdBi2, KFe2Te2, and DySb compounds including others …


Modeling And Analysis Of Covid-19 And Dynamical Systems In Biology And Physics, Vladimir Grbic Jan 2021

Modeling And Analysis Of Covid-19 And Dynamical Systems In Biology And Physics, Vladimir Grbic

Honors Undergraduate Theses

In this paper, we study various examples of dynamical systems found in nature and extract the necessary concepts to build upon. Then, we develop and propose a new deterministic model for COVID-19 propagation. Our model should serve two purposes. First, we will approximate the infected and deceased individuals after a given time during the pandemic. Then, using a linearized subsystem describing infectious compartments about the disease- free equilibrium (DFE), we will determine the basic reproductive number (R0) by the next-generation matrix method.


Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper Jan 2021

Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper

Honors Undergraduate Theses

The purpose of the following research is to explore molten regolith electrolysis (MRE) methodology for in-situ resource utilization (ISRU) of Highlands lunar regolith, to be explored during the initial Artemis missions. An analysis of potential commercial launch providers for MRE-equipment based on technology-readiness level (TRL), payload mass support, and $ USD/kg payload price is provided. SpaceX is ultimately proposed as a launch provider of MRE equipment following multi-factorial analysis, with the SpaceX Starship human landing system (HLS) variant proposed for supporting MRE payload. Finally, customers of regolith-derived oxygen, aluminum, and silicon are distinguished to form the business case for operating …