Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Plasma and Beam Physics

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 296

Full-Text Articles in Physics

Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw Mar 2024

Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw

University Honors Theses

Spectroscopic end point detection is a common tool used for measuring slope changes in wavelength intensity. Using algorithms able to apply this concept, coatings will be able to be dynamically measured in real time and stopped at the appropriate level to ensure process uniformity. It is currently applied to reductive processes such as etching, where the surface will start to be eaten away, creating a plasma. When the entire amount of a material on a substrate has been eaten away, the plasma will change color as it is beginning to etch a different material. Using a spectrometer, this point where …


Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong Dec 2023

Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong

Seton Hall University Dissertations and Theses (ETDs)

Plasma catalysis is an advantageous approach that combines the effects of plasma with the enhancements of a catalyst. By utilizing a nickel catalyst in the plasma discharge zone of a dielectric barrier discharge (DBD), it can give an enhancement to the electrical field, boost microdischarges, and increase conversion and selectivity rates of CH4 and CO2 in the dry reforming of methane (DRM) reaction.

Industrial application of nickel catalysts in DBD Plasma DRM process are limited by poor stability, which is caused by the sintering of active metal particles and coke deposition on the catalyst surface. In this work, …


Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back May 2023

Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back

All Theses

The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.

This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …


The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


Experimental Studies Of Neutral Particles And The Isotope Effect In The Edge Of Tokamak Plasmas, Ryan Chaban Jan 2023

Experimental Studies Of Neutral Particles And The Isotope Effect In The Edge Of Tokamak Plasmas, Ryan Chaban

Dissertations, Theses, and Masters Projects

The H-mode plasma edge is a region of steep gradients in density and temperature known as the “pedestal” which greatly increases energy confinement. The complex links between neutral-plasma interactions and both diffusive and convective transport in the pedestal must be understood to model, predict, and achieve the high performance required for a fusion power plant. This dissertation explores the effects of different hydrogenic isotope neutral particles and plasma transport from the edge pedestal region into the Scrape-Off Layer. Current experiments typically use deuterium (H with amu=2 or D), however future fusion power plants may startup with hydrogen (H), and eventually …


A High-Precision Electron Emission Model: Computational Methods For Nanoscale Structures, Alister J. Tencate Jan 2023

A High-Precision Electron Emission Model: Computational Methods For Nanoscale Structures, Alister J. Tencate

Graduate Research Theses & Dissertations

The high-intensity, high-brightness and precision frontiers for charged particle beams are an increasingly important focus for study. Electron microscopy has demonstrated high quality beams from a single nanotip emitter, and cathodes of structured nanoscale arrays show promise as ultracold electron sources. Optimization of the cathode design for precision applications necessitates a detailed treatment of the interplay between the structure geometry, quantum mechanical emission mechanism, and electromagnetic interactions between the emitted electrons and the boundary interface. This dissertation details the numerical tools developed to simulate these processes efficiently with enough fidelity to be accurate even in the ultracold regime.

Conventional simulation …


Drift Orbit Bifurcation Effects On Earth’S Radiation Belt Electrons, Jinbei Huang Jan 2023

Drift Orbit Bifurcation Effects On Earth’S Radiation Belt Electrons, Jinbei Huang

Graduate Theses, Dissertations, and Problem Reports

Energetic charged particles trapped in the Earth’s radiation belt form a hazardous space environment for artificial electronic systems and astronauts. The study of Earth's radiation belt is becoming increasingly important with the development of communication technology, which plays a significant role in modern society. Earth’s radiation belt is highly dynamic, and the electron flux can drop by several orders of magnitude within a few hours which is called radiation belt dropout. The fast dropout of energetic electrons in the radiation belt, despite its significance, has not been thoroughly studied. One of the most compelling outstanding questions in Earth's radiation belt …


Energy Conversion In Plasmas Out Of Local Thermodynamic Equilibrium: A Kinetic Theory Perspective, Mahmud Hasan Barbhuiya Jan 2023

Energy Conversion In Plasmas Out Of Local Thermodynamic Equilibrium: A Kinetic Theory Perspective, Mahmud Hasan Barbhuiya

Graduate Theses, Dissertations, and Problem Reports

The study of energy conversion in collisionless plasmas that are not in local thermodynamic equilibrium (LTE) is at the leading edge of plasma physics research. Plasma constituents in such systems can exhibit highly structured phase space densities that deviate significantly from that of a Maxwellian. A standard approach has emerged in recent years for investigating energy conversion between bulk flow and thermal energy in collisionless plasmas using the non-LTE generalization of the first law of thermodynamics. The primary focus is placed on pressure-strain interaction (PS) term, with a particular emphasis on its non-LTE piece called Pi − D. Recent studies …


Dual Energy Electron Storage Ring Cooler Design For Relativistic Ion Beams, Bhawin Dhital Dec 2022

Dual Energy Electron Storage Ring Cooler Design For Relativistic Ion Beams, Bhawin Dhital

Physics Theses & Dissertations

Collider experiments demand small beam emittances in order to achieve high luminosity. For light particles such as electrons, there exists a natural synchrotron radiation damping resulting in low emittance beams at equilibrium. In the case of heavy particle beams such as proton or ion beams, there is no significant synchrotron radiation damping effect and some cooling mechanism is needed to get to low emittance beams. A dual energy storage ring cooler is a novel concept proposed to cool hadron beams at higher energies. The design consists of two rings: a low energy ring and a high energy ring connected by …


Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran Ii Sep 2022

Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran Ii

Doctoral Dissertations and Master's Theses

Plasma escape from the high-latitude ionosphere (ion outflow) serves as a significant source of heavy plasma to magnetospheric plasma sheet and ring current regions. Outflows alter mass density and reconnection rates, hence global responses of the magnetosphere. The VISIONS-1 (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of nightside ion outflow at altitudes where it is initiated, below 1000 km. Energetic ion data from the VISIONS-1 polar cap boundary crossing …


Distance Estimates To Evolved Stars Using Infrared Emission And Verification And Validation Of The Plasma Code Empire, Brandon M. Medina Aug 2022

Distance Estimates To Evolved Stars Using Infrared Emission And Verification And Validation Of The Plasma Code Empire, Brandon M. Medina

Physics & Astronomy ETDs

Gaining insight into the structure and dynamics of the Milky Way is important for understanding the universe on a large scale. Evolved stars on the Asymptotic Giant Branch are useful for studying the Milky Way because their emission is peaked in the infrared, where interstellar extinction effects are not as dominant. To further understand the physical properties of these objects like luminosity and investigate the Galaxy's structure, we need distance estimates. Obtaining distance estimates for these evolved stars via trigonometric parallax measurements is time-consuming, so infrared surveys studying Asymptotic Giant Branch stars can benefit from other distance estimate methods. In …


Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer Aug 2022

Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer

Optical Science and Engineering ETDs

Results presented here examine the effect of changing gas pressure on the radio frequency (RF) emissions of an ultrashort pulse laser filament plasma and how those emissions vary longitudinally in the laser focal region. We use a WR284 rectangular waveguide with a 1.5 cm hole that allows the beam through. A 3.2 GHz microwave signal is emitted in the waveguide, and signals are received through a waveguide-to-coax antenna connected to an HP8470B Schottky diode. By enabling and disabling the 3.2 GHz signal, we measure both the self-emitted RF from a USPL filament and subsequently the degree of attenuation a filament …


Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby May 2022

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby

Doctoral Dissertations

Reactor class nuclear fusion tokamaks will be inherently complex. Thousands of interconnected systems that span orders of magnitude in physical scale must operate cohesively for the machine to function. Because these reactor class tokamaks are all in an early design stage, it is difficult to quantify exactly how each subsystem will act within the context of the greater systems. Therefore, to predict the engineering parameters necessary to design the machine, simulation frameworks that can model individual systems as well as the interfaced systems are necessary. This dissertation outlines a novel framework developed to couple otherwise disparate computational domains together into …


Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover May 2022

Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover

Doctoral Dissertations

A self-consistent phase space distribution is a charged particle beam in which the electric field has a linear dependence on the particle coordinates, and in which the linearity of the electric field is conserved as the beam is transported through arbitrary linear focusing fields. These features could increase the possible beam intensity in a circular accelerator by minimizing/eliminating the space charge tune shift/spread. Additionally, the uniform density of known self-consistent distributions would be ideal for fixed-target applications. Finally, certain self-consistent distributions can be flattened by exploiting the relationships between their phases space coordinates and would therefore be useful in a …


Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram May 2022

Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram

Open Access Theses & Dissertations

A radiofrequency electrothermal thruster is designed and simulated to create a low ionization energy plasma from a neutral propellant using a radio-frequency power. With an asymmetrical surface area ratio between the grounded and powered electrode, ion-neutral charge exchange collisions occurring within the propellant result in propellant heating. The Electrothermal Plenum Thruster conducts this propellant heating in an annular plenum chamber in attempt to maximize propellant heating. A software called CFD-ACE+ is utilized to demonstrate the effects of an enhanced sheath from the asymmetrical power coupling arrangement. Two sets of simulations are run to understand how input variables affect the plasma …


Mms Observations Of The Kelvin-Helmholtz Instability And Associated Ion Scale Waves, Rachel C. Rice Apr 2022

Mms Observations Of The Kelvin-Helmholtz Instability And Associated Ion Scale Waves, Rachel C. Rice

Doctoral Dissertations and Master's Theses

The detailed mechanisms coupling the solar wind to Earth's magnetosphere are not yet fully understood. Solar wind plasma is heated non-adiabatically as it penetrates the magnetosphere, and this process must span scale sizes. Reconnection alone is not able to account for the observed heating; other mechanisms must be at work. One potential process is the Kelvin-Helmholtz instability (KHI). The KHI is a convective instability which operates at the fluid scale in plasmas, but is capable of driving secondary process at smaller scales. Previous work has shown evidence of magnetic reconnection, various ion scale wave modes, mode conversion, and turbulence associated …


Whistler Waves: Modeling And Observations, Daniel Williams Apr 2022

Whistler Waves: Modeling And Observations, Daniel Williams

Doctoral Dissertations and Master's Theses

The thesis presents the results of all the research from the published and in publication process research in the Journal of Geophysical Research [1]. This research focuses on whistler wave ducting events in the equatorial magnetosphere. High-density ducts are the main focus of whistler study in both studies as they are commonly observed by the Van Allen Probe satellites. A three-step procedure based on the analysis of the whistler wave dispersion relation and numerical simulations of the electron magnetohydrodynamics model. We use this model to identify the parallel and perpendicular wave numbers of the “most trapped” wave in an attempt …


Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder Jan 2022

Comparing Twins Ion Temperature Maps With Mms, Ampere, And Themis Observations During July 26, 2017 Reconnection Event, Isabella M. Householder

Honors Theses and Capstones

The solar wind releases a constant stream of ionized particles into space which causes complex behaviors to occur within Earth’s magnetosphere. These disruptions can initiate magnetic reconnection and cause flow reversal of ions in the magnetotail. Two flow reversal events were locally detected by the Magnetospheric Multiscale Mission (MMS) on July 26, 2017 at 0700 UT and 0730 UT. The Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) provide a global measurement of heated signatures of the magnetic field and detected an increase in ion temperature during these reconnection events without the presence of a geomagnetic storm. Active Magnetosphere and Planetary Electrodynamics …


Ion Velocity Distribution Functions In Cutting-Edge Plasmas, Mitchell Cameron Paul Jan 2022

Ion Velocity Distribution Functions In Cutting-Edge Plasmas, Mitchell Cameron Paul

Graduate Theses, Dissertations, and Problem Reports

Cutting-edge plasma experiments continue to push the frontiers of plasma science. Two such groups of experiments, helicon sources and laboratory magnetic reconnection, are the focus of this thesis. The relatively high plasma density achieved for modest input powers makes helicon source plasmas ideal testbeds for fusion-relevant phenomena without the complexities associated with fusion devices. Examples include plasma-material interaction (PMI) studies, divertor region studies, and boundary physics studies. As advancements in helicon source design and technology make operation at higher power for longer times possible, understanding of the plasma dynamics, particularly ion dynamics, is vital.

Laboratory experiments are essential to advancing …


Microwave Enhanced Electron Energy Distribution Functions, John Samuel Mckee Jan 2022

Microwave Enhanced Electron Energy Distribution Functions, John Samuel Mckee

Graduate Theses, Dissertations, and Problem Reports

The use of two (or more) radio frequency (RF) sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f0 = 13.56 MHz. Microwaves of frequency f1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via R-mode (anti-parallel to the background magnetic field …


Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch Jan 2022

Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch

Masters Theses

"This research presents studies of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X's USim® software to quantify the nozzle's capabilities. A2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T's Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were …


Edge Fueling And Neutral Density Studies Of The Alcator C-Mod Tokamak Using The Solps-Iter Code, Richard M. Reksoatmodjo Jan 2022

Edge Fueling And Neutral Density Studies Of The Alcator C-Mod Tokamak Using The Solps-Iter Code, Richard M. Reksoatmodjo

Dissertations, Theses, and Masters Projects

Understanding edge neutral dynamics in high-field tokamaks has strong consequencesfor both fueling and plasma profile predictions. We validate the ability of SOLPS-ITER, a 2D fluid plasma/kinetic Monte Carlo neutral code, to accurately model the upstream neutral density profiles of L-mode, I-mode, and H-mode discharges in the Alcator CMod tokamak, for which Lyman-alpha emission measurements were available. We achieve simulated Lyman-alpha emission and neutral density profiles that are within one standard deviation of empirically inferred profiles for all three discharges, via iterative tuning of the perpendicular transport coefficient profiles alone, providing confidence in the conclusion that while further physics (drifts, impurities, …


Scaling Theory Of 3d Magnetic Reconnection X-Line Spreading, Milton Arencibia Jan 2022

Scaling Theory Of 3d Magnetic Reconnection X-Line Spreading, Milton Arencibia

Graduate Theses, Dissertations, and Problem Reports

Magnetic reconnection is fundamental process in plasmas that converts magnetic energy into kinetic and thermal energy via a change in magnetic topology. Magnetic reconnection is known to mediate eruptive solar flares, geomagnetic substorms that create the Northern lights, heating and particle acceleration in controlled fusion devices, and is thought to be an important process in numerous settings in high-energy astrophysics. Classical models of reconnection are two-dimensional (2D), but naturally occurring reconnection is three-dimensional (3D), and a manifestation of the 3D nature is that the x-line where the magnetic field topology changes has a finite extent in the direction normal to …


Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers Dec 2021

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers

Doctoral Dissertations

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear pulse plasma device at Oak Ridge National Laboratory with the purpose of doing the research and development for the heating concepts on the planned full MPEX device. The goal of MPEX is to perform material studies at fusion relevant conditions. To understand the conditions at the material target for performing plasma-material interaction studies the ion temperature and density, the electron temperature and density, and the particle flux and fluence must be known. Impurities within Proto-MPEX can alter the desired conditions at the material target and need to be understood for …


Plasma-Laser Wakefield Acceleration, Jonathan Babu Dec 2021

Plasma-Laser Wakefield Acceleration, Jonathan Babu

Physics

Many texts detailing the derivations and science of Wakefield Acceleration are aimed at graduate and doctorate level scholars, and these may seem intimidating to new physics students. This paper is meant to be an introduction to the nature of plasmas, lasers, laser-plasma interactions, and Laser Wakefield Acceleration (LWFA), with sources given where extra detail may be required. I recognize that this paper is not meant to be an all-encompassing review on the nature of the topics, as these topics are complex and subject of entire textbooks. Instead, I aim to provide an introduction to these topics to a college-level scholar …


Ultra-Low Frequency Waves At Middle Latitudes During Substorms: Observations And Modeling, Mergen Alimaganbetov Oct 2021

Ultra-Low Frequency Waves At Middle Latitudes During Substorms: Observations And Modeling, Mergen Alimaganbetov

Doctoral Dissertations and Master's Theses

This doctoral dissertation presents the results of investigation of the Ultra-Low Frequency (ULF) waves at middle latitudes during substorms. The dissertation consists of two major parts, observations and simulations. The research in this dissertation proposes that the main role in the generation of ULF waves at middle latitudes during substorm belongs to the plasmapause.

The first part of the dissertation presents results of the data analysis of 84 intense substorm events as well as an overview of space observation programs such as CRRES, Van Allen Probes and DMSP. Data used in this study are from the ACE satellite taken measurements …


Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver Sep 2021

Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver

Theses and Dissertations

This dissertation covers nanosecond pulsed laser ablation of graphite for 4-5.7 J/cm2 fluences with 248 nm and 532 nm lasers in 1-180 Torr helium, argon, nitrogen, air, and mixed gas. Three experiments were performed to improve the interpretation of common diagnostics used to characterize pulsed laser ablation, find simple but universal scaling relationships for comparing dynamics across different materials and ablation conditions, and provide a systematic analysis of graphite emissive plume and shock wave dynamics. A scaling of the Sedov-Taylor energy ratio was developed and validated for a range of studies despite differences in wavelength, pulse duration, fluence, and …


Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini Aug 2021

Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini

Doctoral Dissertations

A collector probe in its simplest form is a rod inserted into a plasma so that impurities are deposited onto it. These probes are then removed and analyzed to determine the deposition profile both along the length of probe and across the width of it. This dissertation covers a series of collector probes experiments and accompanying interpretive modelling all with the main goal of providing evidence for long-hypothesized near scrape-off layer (SOL) accumulation of impurities that can lead to efficient core contamination. The structure of this dissertation is as follows. A brief outline of fusion energy and why we need …


A Study Of Systematic Uncertainties For A Photon-Like Low Energy Excess Search At Microboone, Gray Yarbrough Aug 2021

A Study Of Systematic Uncertainties For A Photon-Like Low Energy Excess Search At Microboone, Gray Yarbrough

Doctoral Dissertations

The premise of this dissertation is the study of and reduction of systematic uncertainties in the MicroBooNE experiment at the Fermi National Accelerator Laboratory. MicroBooNE is a short-baseline oscillation experiment using the innovative liquid argon time projection chamber technology to study, with unprecedented detail, neutrino interactions. The primary goal of MicroBooNE is the investigation of the MiniBooNE low energy excess (LEE) of electron neutrino events, a result which raised fundamental questions on the existence of sterile neutrinos with broad implications to the field of particle physics. The principal study of this dissertation is a study of systematics as part of …


Plasma Agriculture: Characterization Of Dbd Plasma Jet And Analysis Of Effects When Treated On Sweet Basil (Ocimum Basilicum), William Davis Jul 2021

Plasma Agriculture: Characterization Of Dbd Plasma Jet And Analysis Of Effects When Treated On Sweet Basil (Ocimum Basilicum), William Davis

Seton Hall University Dissertations and Theses (ETDs)

Plasma agriculture is an increasingly diverse field, where effects of nonthermal or cold plasma are measured by their influence on plant physiology and growth rate. Effects range from sterilization, germination, increased growth rate, cell metabolism, and so forth. This study aims to investigate the understanding of the generation of specific reactive oxygen and nitrogen species (RONS) from a nonthermal atmospheric DBD helium-based plasma jet and identify quantifiable effects that can directly translate to different applications related to plasma agriculture. Basil plants were separated into treated and control groups and grown hydroponically. The treated plants received a 30 second exposure treatment …