Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Plasma

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 44

Full-Text Articles in Physics

Hybrid Iterative Approach For Simulation Of Radio-Frequency Fields In Plasma, Vladimir A. Svidzinski, Jin-Soo Kim, Liangji Zhao, S. A. Galkin, Joseph Andrew Spencer Aug 2018

Hybrid Iterative Approach For Simulation Of Radio-Frequency Fields In Plasma, Vladimir A. Svidzinski, Jin-Soo Kim, Liangji Zhao, S. A. Galkin, Joseph Andrew Spencer

Physics Student Research

A novel iterative approach for solving discretized linear wave equations in a frequency domain, which combines time evolution with iterative relaxation schemes, is presented. In this hybrid approach, each iteration cycle consists of evolution of electromagnetic (EM) fields in time over a specified number of field periods followed by several iterative relaxations. Provided that there is sufficient dissipation, both the time evolution and the iterative relaxations contribute to the convergence of the EM fields to the solution of the formulated full wave boundary value problem. Time evolution rapidly distributes EM fields, propagating with group velocity, over the simulation domain, while ...


Hill Functions For Stochastic Gene Regulatory Networks From Master Equations With Split Nodes And Time-Scale Separation, Ovidiu Lipan, Cameron Ferwerda Feb 2018

Hill Functions For Stochastic Gene Regulatory Networks From Master Equations With Split Nodes And Time-Scale Separation, Ovidiu Lipan, Cameron Ferwerda

Physics Faculty Publications

The deterministic Hill function depends only on the average values of molecule numbers. To account for the fluctuations in the molecule numbers, the argument of the Hill function needs to contain the means, the standard deviations, and the correlations. Here we present a method that allows for stochastic Hill functions to be constructed from the dynamical evolution of stochastic biocircuits with specific topologies. These stochastic Hill functions are presented in a closed analytical form so that they can be easily incorporated in models for large genetic regulatory networks. Using a repressive biocircuit as an example, we show by Monte Carlo ...


A Molecular Debye-Hückel Theory Of Solvation In Polar Fluids: An Extension Of The Born Model, Tiejun Xiao, Xueyu Song Dec 2017

A Molecular Debye-Hückel Theory Of Solvation In Polar Fluids: An Extension Of The Born Model, Tiejun Xiao, Xueyu Song

Ames Laboratory Accepted Manuscripts

A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in ...


Accelerator Based Fusion Reactor, Keh-Fei Liu, Alexander Wu Chao Aug 2017

Accelerator Based Fusion Reactor, Keh-Fei Liu, Alexander Wu Chao

Physics and Astronomy Faculty Publications

A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+tn+α, d+3Hep+α and p+11B→3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam ...


The Impact Of Base Stacking On The Conformations And Electrostatics Of Single-Stranded Dna, Alex Plumridge, Steve P. Meisburger, Kurt Andresen, Lois Pollack Feb 2017

The Impact Of Base Stacking On The Conformations And Electrostatics Of Single-Stranded Dna, Alex Plumridge, Steve P. Meisburger, Kurt Andresen, Lois Pollack

Physics and Astronomy Faculty Publications

Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy ...


Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er Feb 2017

Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface ...


Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George Feb 2017

Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George

CCPO Publications

This Special Topic Section is dedicated to the life and memory of John Leask Lumley(1930-2015), professor and scientist extraordinaire.


Electrically Induced Plasma, Nate Ashby Nov 2015

Electrically Induced Plasma, Nate Ashby

Physics Capstone Project

No abstract provided.


Effects Of Plasma Processing On Secondary Electron Yield Of Niobium Samples, M. Basovic, S. Popovic, M. Tomovic, L. Vuskovic, A. Samolov, F. Cuckov Jan 2015

Effects Of Plasma Processing On Secondary Electron Yield Of Niobium Samples, M. Basovic, S. Popovic, M. Tomovic, L. Vuskovic, A. Samolov, F. Cuckov

Physics Faculty Publications

Impurities deposited on the surface of Nb during both the forming and welding of accelerator cavities add to the imperfections of the sheet metal, which then affects the overall performance of the cavities. This leads to a drop in the Q factor and limits the maximum acceleration gradient achievable per unit length of the cavities. The performance can be improved either by adjusting the fabrication and preparation parameters, or by mitigating the effects of fabrication and preparation techniques used. We have developed the experimental setup to determine Secondary Electron Yield (SEY) from the surface of Nb samples. Our aim is ...


Experiment And Results On Plasma Etching Of Srf Cavities, J. Upadhyay, Do Im, J. Peshl, S. Popovic, L. Vuskovic, A. -M. Valente-Feliciano, L. Phillips Jan 2015

Experiment And Results On Plasma Etching Of Srf Cavities, J. Upadhyay, Do Im, J. Peshl, S. Popovic, L. Vuskovic, A. -M. Valente-Feliciano, L. Phillips

Physics Faculty Publications

The inner surfaces of SRF cavities are currently chemically treated (etched or electro polished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically ...


Using Higher Ionization States To Increase Coulomb Coupling In An Ultracold Neutral Plasma, M. Lyon, Scott D. Bergeson, A. Diaw, M. S. Murillo Jan 2015

Using Higher Ionization States To Increase Coulomb Coupling In An Ultracold Neutral Plasma, M. Lyon, Scott D. Bergeson, A. Diaw, M. S. Murillo

Faculty Publications

We report measurements and simulations of the time-evolving rms velocity distribution in an ultracold neutral plasma. A strongly coupled ultracold neutral Ca+ plasma is generated by photoionizing laser-cooled atoms close to threshold. A fraction of these ions is then promoted to the second ionization state to form a mixed Ca+-Ca2+ plasma. By varying the time delay between the first and the second ionization events, a minimum in ion heating is achieved. We show that the Coulomb strong-coupling parameter Γ increases by a factor of 1.4 to a maximum value of 3.6. A pure Ca2+ plasma ...


The Magnetopause: Bringing Space Physics Into A Junior Lab, Jim Crumley, Ari Palczewski,, Stephen Kaster Jul 2014

The Magnetopause: Bringing Space Physics Into A Junior Lab, Jim Crumley, Ari Palczewski,, Stephen Kaster

MapCores Faculty Publications

Undergraduate students often have minimal exposure to many subfields
of physics which are active areas of research. Space physics
is an area that is particularly difficult to expose students to since
it builds off of another area that most undergraduates see little of,
plasma physics. The magnetopause is convenient entry point
into space physics, since it can be modeled as a pressure balance, which is
a concept familiar from introductory physics. We use the Earth's
magnetopause as the basis for a lab for junior physics majors. In
the lab students analyze results from a NASA MHD simulation and
data ...


Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar Jan 2014

Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar

Electrical & Computer Engineering Faculty Publications

During the last two decades, research efforts on the application of low temperature plasmas in biology and medicine have positioned nonequilibrium lowtemperature plasmas as a technology that has the potential of revolutionizing healthcare.[1,2] Low temperature plasmas can be applied in direct contact with living tissues to inactivate bacteria,[3] to disinfect wounds and accelerate wound healing,[4] and to induce damage in some cancer cells.[5–11]


Diagnostics Of An O2–He Rf Atmospheric Plasma Discharge By Spectral Emission, Vladimir Milosavljevic, Mick Donegan, Patrick Cullen, Denis Dowling Jan 2014

Diagnostics Of An O2–He Rf Atmospheric Plasma Discharge By Spectral Emission, Vladimir Milosavljevic, Mick Donegan, Patrick Cullen, Denis Dowling

Articles

In this paper optical emission spectroscopy (OES) is used as a Diagnostic technique for the measurement of atomic and molecular spectral emissions generated using a helium rf industrial atmospheric plasma jet system. The OES of neutral atomic spectral lines and molecular bands are investigated over a range of plasma process parameters.
Wavelength resolve optical emission profiles suggest that the emission of helium’s spectral lines shows that the high energy electrons have a larger influence than helium metastables on the overall spectral emission. Furthermore, the experimental data indicates that the use of high helium flow rates, in any confined open ...


Magnetic Field Amplification In Electron Phase-Space Holes And Related Effects, R. A. Treumann, W. Baumjohann Apr 2012

Magnetic Field Amplification In Electron Phase-Space Holes And Related Effects, R. A. Treumann, W. Baumjohann

Open Dartmouth: Faculty Open Access Scholarship

No abstract provided.


The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown Aug 2011

The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown

STAR (STEM Teacher and Researcher) Presentations

The Fusion and Astrophysics (FAST) Calibration and Diagnostic Facility uses the original Electron Beam Ion Trap (EBIT-I) to profile x-ray filters that are used in the Dante Soft X-Ray Diagnostic at the National Ignition Facility (NIF). FAST has an advantage over any other facility not only for its high accuracy, but also for its proximity to NIF in the Lawrence Livermore National Laboratory (LLNL). This makes for highly accurate and near-instantaneous filter calibration turnover.

EBIT-I was first constructed to create, trap, and observe static highly charged ions (HCIs) and conduct experimental astrophysics (creating an x-ray spectroscopy catalogue of ions). To ...


The Role Of The Bow Shock In Solar Wind-Magnetosphere Coupling, R E. Lopez, V G. Merkin, J G. Lyon Jun 2011

The Role Of The Bow Shock In Solar Wind-Magnetosphere Coupling, R E. Lopez, V G. Merkin, J G. Lyon

Open Dartmouth: Faculty Open Access Scholarship

No abstract provided.


Turbulence And Bias-Induced Flows In Simple Magnetized Toroidal Plasmas, B. Li, B. N. Rogers, P. Ricci, K. W. Gentle May 2011

Turbulence And Bias-Induced Flows In Simple Magnetized Toroidal Plasmas, B. Li, B. N. Rogers, P. Ricci, K. W. Gentle

Open Dartmouth: Faculty Open Access Scholarship

Turbulence and bias-induced flows in simple magnetized toroidal plasmas are explored with global three- dimensional fluid simulations, focusing on the parameters of the Helimak experiment. The simulations show that plasma turbulence and transport in the regime of interest are dominated by the ideal interchange instability. The application of a bias voltage alters the structure of the plasma potential, resulting in the equilibrium sheared flows. These bias-induced vertical flows located in the gradient region appear to reduce the radial extent of turbulent structures, and thereby lower the radial plasma transport on the low field side.


Ignition Of A Large Volume Plasma With A Plasma Jet, M. Laroussi, M. A. Akman Jan 2011

Ignition Of A Large Volume Plasma With A Plasma Jet, M. Laroussi, M. A. Akman

Electrical & Computer Engineering Faculty Publications

Here we report on a method to generate a long plasma plume and to ignite a large volume plasma by means of the jet. The plasma plume is generated by our tube reactor and then introduced into a chamber where the pressure is controlled. We discovered there are three operating phases:Aphasewhere the plume length remains approximately constant, followed by a second phase where the jet increases in length as the pressure decreases. Then at pressures below 70 Torr a mode transition occurs where the plume length decreases and the plasma expands until the entire chamber is filled.


Resistive Mhd Reconstruction Of Two-Dimensional Coherent Structures In Space, W L. Teh, B U. Sonnerup, J Birn, R E. Denton Nov 2010

Resistive Mhd Reconstruction Of Two-Dimensional Coherent Structures In Space, W L. Teh, B U. Sonnerup, J Birn, R E. Denton

Open Dartmouth: Faculty Open Access Scholarship

We present a reconstruction technique to solve the steady resistive MHD equations in two dimensions with initial inputs of field and plasma data from a single space- craft as it passes through a coherent structure in space. At least two components of directly measured electric fields (the spacecraft spin-plane components) are required for the reconstruction, to produce two-dimensional (2-D) field and plasma maps of the cross section of the structure. For con- venience, the resistivity tensor η is assumed diagonal in the reconstruction coordinates, which allows its values to be es- timated from Ohm’s law, E+v×B=η ...


Hydrodynamic Relaxation Of An Electron Plasma To A Near-Maximum Entropy State, D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, T. Aziz Jun 2009

Hydrodynamic Relaxation Of An Electron Plasma To A Near-Maximum Entropy State, D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, T. Aziz

Open Dartmouth: Faculty Open Access Scholarship

Dynamical relaxation of a pure electron plasma in a Malmberg-Penning trap is studied, comparing experiments, numerical simulations and statistical theories of weakly dissipative two-dimensional (2D) turbulence. Simulations confirm that the dynamics are approximated well by a 2D hydrodynamic model. Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state with constrained energy, circulation, and angular momentum. This provides evidence that 2D electron fluid relaxation in a turbulent regime is governed by principles of maximum entropy.


The Ionization Balance Of A Non-Equilibrium Plasma, Gary J. Ferland Jun 2009

The Ionization Balance Of A Non-Equilibrium Plasma, Gary J. Ferland

Physics and Astronomy Faculty Publications

Commentary on: Arnaud M. and Rothenflug R., 1985, A&AS, 60, 425.


Relevance Of Ground-Based Electron-Induced Electrostatic Discharge Measurements To Space Plasma Environments, Jennifer A. Roth, Ryan Hoffmann, Jr Dennison, Jonathon R. Tippetts Jan 2009

Relevance Of Ground-Based Electron-Induced Electrostatic Discharge Measurements To Space Plasma Environments, Jennifer A. Roth, Ryan Hoffmann, Jr Dennison, Jonathon R. Tippetts

All Physics Faculty Publications

Electron-induced electrostatic discharge (ESD) can lead to severe spacecraft anomalies. It is crucial to the success of space missions that the likelihood of ESD occurrence is understood and mitigated. To aid in predicting ESD occurrence, a model for electric fields above and below the charge layer inside an electronirradiated dielectric material was developed. An instrumentation system was also designed to induce and detect ESD events. Because ESD events with a wide range of maximum current values can occur over a range of time intervals, multiple simultaneous detection methods were employed as charge was accumulated on a sample surface; these included ...


Invited Article: Data Analysis Of The Floating Potential Measurement Unit Aboard The International Space Station, Aroh Barjatya, Charles M. Swenson, Donald C. Thompson, Kenneth H. Wright Jan 2009

Invited Article: Data Analysis Of The Floating Potential Measurement Unit Aboard The International Space Station, Aroh Barjatya, Charles M. Swenson, Donald C. Thompson, Kenneth H. Wright

Publications

We present data from the Floating Potential Measurement Unit (FPMU) that is deployed on the starboard truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of a floating potential probe, a wide-sweeping spherical Langmuir probe, a narrow-sweeping cylindrical Langmuir probe, and a plasma impedance probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data are presented from August 5, 2006 and March ...


Electron Density And Electron Neutral Collision Frequency In The Ionosphere Using Plasma Impedance Probe Measurement, E. Spencer, S. Patra, T. Andriyas, C. Swenson, J. Ward, Aroh Barjatya Sep 2008

Electron Density And Electron Neutral Collision Frequency In The Ionosphere Using Plasma Impedance Probe Measurement, E. Spencer, S. Patra, T. Andriyas, C. Swenson, J. Ward, Aroh Barjatya

Publications

Swept Impedance Probe measurements in a sporadic E layer observed during the Sudden Atomic Layer (SAL) sounding rocket mission are analyzed to obtain absolute electron densities and electron neutral collision frequencies accurately. Three sets of upleg and downleg impedance data are selected for the analysis. Initial estimates of the plasma parameters are obtained through a least mean square fit of the measured impedance data against the analytical impedance formula ZB(f ) of Balmain (1969). These initial parameters are used as a starting point to drive a finite difference computational model of an antenna immersed in a plasma called PF-FDTD. The ...


The Structure Of Flux Transfer Events Recovered From Cluster Data, H Hasegawa, B U. Ö Sonnerup, C J. Owen, B Klecker, G Paschmann, A Balogh, H Re`Me Mar 2006

The Structure Of Flux Transfer Events Recovered From Cluster Data, H Hasegawa, B U. Ö Sonnerup, C J. Owen, B Klecker, G Paschmann, A Balogh, H Re`Me

Open Dartmouth: Faculty Open Access Scholarship

The structure and formation mechanism of a to- tal of five Flux Transfer Events (FTEs), encountered on the equatorward side of the northern cusp by the Cluster space- craft, with separation of ∼5000 km, are studied by apply- ing the Grad-Shafranov (GS) reconstruction technique to the events. The technique generates a magnetic field/plasma map of the FTE cross section, using combined magnetic field and plasma data from all four spacecraft, under the assump- tion that the structure is two-dimensional (2-D) and time- independent. The reconstructed FTEs consist of one or more magnetic flux ropes embedded in the magnetopause, suggest- ...


Comparative Investigations Of Equatorial Electrodynamics And Low-To-Mid Latitude Coupling Of The Thermosphere-Ionosphere System, M J. Colerico, M Mendillo, C G. Fesen, J Meriwether Mar 2006

Comparative Investigations Of Equatorial Electrodynamics And Low-To-Mid Latitude Coupling Of The Thermosphere-Ionosphere System, M J. Colerico, M Mendillo, C G. Fesen, J Meriwether

Open Dartmouth: Faculty Open Access Scholarship

The thermospheric midnight temperature maxi-

mum (MTM) is a highly variable, but persistent, large scale

neutral temperature enhancement which occurs at low lati-

tudes. Its occurrence can impact many fundamental upper

atmospheric parameters such as pressure, density, neutral

winds, neutral density, and F-region plasma. Although the

MTM has been the focus of several investigations employ-

ing various instrumentation including photometers, satellites,

and Fabry-Perot interferometers, limited knowledge exists

regarding the latitude extent of its influence on the upper at-

mosphere. This is largely due to observational limitations

which confined the collective geographic range to latitudes

within ±23◦. This paper investigates the ...


Ultracold Neutral Plasma Expansion In Two Dimensions, E. A. Cummings, J. E. Daily, Dallin S. Durfee, Scott D. Bergeson Dec 2005

Ultracold Neutral Plasma Expansion In Two Dimensions, E. A. Cummings, J. E. Daily, Dallin S. Durfee, Scott D. Bergeson

Faculty Publications

An isothermal model of ultracold neutral plasma expansion is extended to systems without spherical symmetry. It is used to interpret new fluorescence measurements on ultracold neutral calcium plasmas. For a self-similar expansion, the fluid equations are solved both analytically and numerically. The density and velocity solutions are used to predict fluorescence signals induced by a laser beam weakly focused into the plasma. Despite the simplicity of the model, predicted fluorescence signals reproduce major features of the experimental data


Erratum: Computing The M = 1 Diocotron Frequency Via An Equilibrium Calculation In Non-Neutral Plasmas, Ross L. Spencer May 2005

Erratum: Computing The M = 1 Diocotron Frequency Via An Equilibrium Calculation In Non-Neutral Plasmas, Ross L. Spencer

Faculty Publications

Equation 14 in this paper contains errors.


Optimal Reconstruction Of Magnetopause Structures From Cluster Data, H Hasegawa, B U. Ö Sonnerup, B Klecker, G Paschmann Mar 2005

Optimal Reconstruction Of Magnetopause Structures From Cluster Data, H Hasegawa, B U. Ö Sonnerup, B Klecker, G Paschmann

Open Dartmouth: Faculty Open Access Scholarship

The Grad-Shafranov (GS) reconstruction tech- nique, a single-spacecraft based data analysis method for recovering approximately two-dimensional (2-D) magneto- hydrostatic plasma/field structures in space, is improved to become a multi-spacecraft technique that produces a single field map by ingesting data from all four Cluster spacecraft into the calculation. The plasma pressure, required for the technique, is measured in high time resolution by only two of the spacecraft, C1 and C3, but, with the help of spacecraft po- tential measurements available from all four spacecraft, the pressure can be estimated at the other spacecraft as well via a relationship, established from ...