Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Plasma

2000

Articles 1 - 2 of 2

Full-Text Articles in Physics

Snapover: Anomalous Plasma Current Collection By Positively Biased Conductors When Surrounded By A Dielectric, Clint Thomson, John R. Dennison May 2000

Snapover: Anomalous Plasma Current Collection By Positively Biased Conductors When Surrounded By A Dielectric, Clint Thomson, John R. Dennison

All Physics Faculty Publications

Over the last decade, high-powered spacecraft have been designed that will operate at voltages greater than 100 V. At these voltages, the solar arrays can undergo both destructive arcing at negative biases, and plasma electron current collection at positive biases. Furthermore, above some critical positive bias voltage (~100 V), the electron current collected by the array interconnects increases dramatically through a phenomenon termed Asnapover@. During snapover, large portions of the solar array cover glass charge positively, and begin to draw electron current from the plasma as if it were a conducting surface. This leads to substantial power losses for the …


Investigation Of The First Snapover Of Positively Biased Conductors In A Plasma, C. D. Thomson, John R. Dennison, R. E. Davies, D. C. Ferguson, J. T. Galafaro, B. V. Vayner Jan 2000

Investigation Of The First Snapover Of Positively Biased Conductors In A Plasma, C. D. Thomson, John R. Dennison, R. E. Davies, D. C. Ferguson, J. T. Galafaro, B. V. Vayner

All Physics Faculty Publications

We describe a systematic experimental investigation of the phenomenon termed "snapover." In snapover, the current collected by a positively biased conductor, surrounded by a dielectric and immersed in a plasma, increases dramatically when the conductor potential is raised above some threshold value. The phenomenon is particularly relevant to the case of high-voltage solar arrays in Earth orbit. Our experiments examined the importance of conducting material, insulating material, size and shape of the conductor, sample history, biasing rate, and condition of the dielectric surface (contamination and smoothness) to the onset potential and current jump. In addition to a primary snapover occurring …