Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Applied Mathematics

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 167

Full-Text Articles in Physics

Year-2 Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Steven M. Wise, Evan Habbershaw Jan 2024

Year-2 Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Steven M. Wise, Evan Habbershaw

Faculty Publications and Other Works -- Mathematics

In this second progress report we expand upon our previous report and preliminary work. Specifically, we review some work on the numerical solution of single- and multi-species BGK-type kinetic equations of particle transport. Such equations model the motion of fluid particles via a density field when the kinetic theory of rarefied gases must be used in place of the continuum limit Navier-Stokes and Euler equations. The BGK-type equations describe the fluid in terms of phase space variables, and, in three space dimensions, require 6 independent phase-space variables (3 for space and 3 for velocity) for each species for accurate simulation. …


Renormalized Stress-Energy Tensor For Scalar Fields In Hartle-Hawking, Boulware, And Unruh States In The Reissner-Nordström Spacetime, Julio Arrechea, Cormac Breen, Adrian Ottewill, Peter Taylor Dec 2023

Renormalized Stress-Energy Tensor For Scalar Fields In Hartle-Hawking, Boulware, And Unruh States In The Reissner-Nordström Spacetime, Julio Arrechea, Cormac Breen, Adrian Ottewill, Peter Taylor

Articles

In this paper, we consider a quantum scalar field propagating on the Reissner-Nordström black hole spacetime. We compute the renormalized stress-energy tensor for the field in the Hartle-Hawking, Boulware and Unruh states. When the field is in the Hartle-Hawking state, we renormalize using the recently developed “extended coordinate” prescription. This method, which relies on Euclidean techniques, is very fast and accurate. Once, we have renormalized in the Hartle-Hawking state, we compute the stress-energy tensor in the Boulware and Unruh states by leveraging the fact that the difference between stress-energy tensors in different quantum states is already finite. We consider a …


The Role Of Nanofluids In Renewable Energy Engineering, M. M. Bhatti, K. Vafai, Sara I. Abdelsalam Sep 2023

The Role Of Nanofluids In Renewable Energy Engineering, M. M. Bhatti, K. Vafai, Sara I. Abdelsalam

Basic Science Engineering

No abstract provided.


Assorted Kerosene-Based Nanofluid Across A Dual-Zone Vertical Annulus With Electroosmosis, Sara I. Abdelsalam, A. M. Alsharif, Y. Abd Elmaboud, A. I. Abdellateef May 2023

Assorted Kerosene-Based Nanofluid Across A Dual-Zone Vertical Annulus With Electroosmosis, Sara I. Abdelsalam, A. M. Alsharif, Y. Abd Elmaboud, A. I. Abdellateef

Basic Science Engineering

The goal of this numerical simulation is to visualize the electroosmotic flow of immiscible fluids through a porous medium in vertical annular microtubes. The inner region (Region I) is filled with an electrically conducting hybrid nanofluid while an electrically conducting Jeffrey fluid is flowing in the second region (Region II). The chosen nanofluid is kerosene-based and the nanoparticles (Fe3O4-TiO2) are of a spherical shape. A strong zeta potential is taken into account and the electroosmotic velocity in the two layers is considered too. The annular microtubes are subjected to an external magnetic field and an electric field. The linked nonlinear …


The Lagrangian Formulation For Wave Motion With A Shear Current And Surface Tension, Conor Curtin, Rossen Ivanov Jan 2023

The Lagrangian Formulation For Wave Motion With A Shear Current And Surface Tension, Conor Curtin, Rossen Ivanov

Articles

The Lagrangian formulation for the irrotational wave motion is straightforward and follows from a Lagrangian functional which is the difference between the kinetic and the potential energy of the system. In the case of fluid with constant vorticity, which arises for example when a shear current is present, the separation of the energy into kinetic and potential is not at all obvious and neither is the Lagrangian formulation of the problem. Nevertheless, we use the known Hamiltonian formulation of the problem in this case to obtain the Lagrangian density function, and utilising the Euler-Lagrange equations we proceed to derive some …


The Mceliece Cryptosystem As A Solution To The Post-Quantum Cryptographic Problem, Isaac Hanna Jan 2023

The Mceliece Cryptosystem As A Solution To The Post-Quantum Cryptographic Problem, Isaac Hanna

Senior Honors Theses

The ability to communicate securely across the internet is owing to the security of the RSA cryptosystem, among others. This cryptosystem relies on the difficulty of integer factorization to provide secure communication. Peter Shor’s quantum integer factorization algorithm threatens to upend this. A special case of the hidden subgroup problem, the algorithm provides an exponential speedup in the integer factorization problem, destroying RSA’s security. Robert McEliece’s cryptosystem has been proposed as an alternative. Based upon binary Goppa codes instead of integer factorization, his cryptosystem uses code scrambling and error introduction to hinder decrypting a message without the private key. This …


A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill Sep 2022

A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill

Articles

In this paper, we describe an extremely efficient method for computing the renormalized stress-energy tensor of a quantum scalar field in spherically symmetric black hole spacetimes. The method applies to a scalar field with arbitrary field parameters. We demonstrate the utility of the method by computing the renormalized stress-energy tensor for a scalar field in the Schwarzschild black hole spacetime, applying our results to discuss the null energy condition and the semiclassical backreaction.


Entropy Analysis Of Sutterby Nanofluid Flow Over A Riga Sheet With Gyrotactic Microorganisms And Cattaneo–Christov Double Diffusion, M. Faizan, F. Ali, K. Loganathan, A. Zaib, C. A. Reddy, Sara I. Abdelsalam Sep 2022

Entropy Analysis Of Sutterby Nanofluid Flow Over A Riga Sheet With Gyrotactic Microorganisms And Cattaneo–Christov Double Diffusion, M. Faizan, F. Ali, K. Loganathan, A. Zaib, C. A. Reddy, Sara I. Abdelsalam

Basic Science Engineering

In this article, a Riga plate is exhibited with an electric magnetization actuator consisting of permanent magnets and electrodes assembled alternatively. This exhibition produces electromagnetic hydrodynamic phenomena over a fluid flow. A new study model is formed with the Sutterby nanofluid flow through the Riga plate, which is crucial to the structure of several industrial and entering advancements, including thermal nuclear reactors, flow metres and nuclear reactor design. This article addresses the entropy analysis of Sutterby nanofluid flow over the Riga plate. The Cattaneo–Christov heat and mass flux were used to examine the behaviour of heat and mass relaxation time. …


Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill Jul 2022

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are
(a) a one-piece base for the standard kit's (Martin-style) bracing,
(b) 277 Ladder-style bracing, and
(c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.

The CADD data set for each of the three (3) top bracing designs includes …


A Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Evan Habbershaw, Steven M. Wise Jul 2022

A Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Evan Habbershaw, Steven M. Wise

Faculty Publications and Other Works -- Mathematics

In this report we review some preliminary work on the numerical solution of BGK-type kinetic equations of particle transport. Such equations model the motion of fluid particles via a density field when the kinetic theory of rarefied gases must be used in place of the continuum limit Navier-Stokes and Euler equations. The BGK-type equations describe the fluid in terms of phase space variables, and, in three space dimensions, require 6 independent phase-space variables (3 for space and 3 for velocity) for accurate simulation. This requires sophisticated numerical algorithms and efficient code to realize predictions over desired space and time scales. …


Modelling Spherical Aberration Detection In An Analog Holographic Wavefront Sensor, Emma Branigan, Suzanne Martin, Matthew Sheehan, Kevin Murphy Jul 2022

Modelling Spherical Aberration Detection In An Analog Holographic Wavefront Sensor, Emma Branigan, Suzanne Martin, Matthew Sheehan, Kevin Murphy

Conference Papers

The analog holographic wavefront sensor (AHWFS) is a simple and robust solution to wavefront sensing in turbulent environments. Here, the ability of a photopolymer based AHWFS to detect refractively generated spherical aberration is modelled and verified.


Bbt Side Mold Assy, Bill Hemphill Jun 2022

Bbt Side Mold Assy, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds, speed, multi-pass …


Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao May 2022

Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao

Publications

The long-term statistical characteristics of high-frequency quasi-monochromatic gravity waves are presented using multi-year airglow images observed at Andes Lidar Observatory (ALO, 30.3° S, 70.7° W) in northern Chile. The distribution of primary gravity wave parameters including horizontal wavelength, vertical wavelength, intrinsic wave speed, and intrinsic wave period are obtained and are in the ranges of 20–30 km, 15–25 km, 50–100 m s−1, and 5–10 min, respectively. The duration of persistent gravity wave events captured by the imager approximately follows an exponential distribution with an average duration of 7–9 min. The waves tend to propagate against the local background winds and …


Nessie Notation: A New Tool In Sequential Substitution Systems And Graph Theory For Summarizing Concatenations, Colton Davis May 2022

Nessie Notation: A New Tool In Sequential Substitution Systems And Graph Theory For Summarizing Concatenations, Colton Davis

Student Research

While doing research looking for ways to categorize causal networks generated by Sequential Substitution Systems, I created a new notation to compactly summarize concatenations of integers or strings of integers, including infinite sequences of these, in the same way that sums, products, and unions of sets can be summarized. Using my method, any sequence of integers or strings of integers with a closed-form iterative pattern can be compactly summarized in just one line of mathematical notation, including graphs generated by Sequential Substitution Systems, many Primitive Pythagorean Triplets, and various Lucas sequences including the Fibonacci sequence and the sequence of square …


On The Coriolis Effect For Internal Ocean Waves, Rossen Ivanov Jan 2022

On The Coriolis Effect For Internal Ocean Waves, Rossen Ivanov

Conference papers

A derivation of the Ostrovsky equation for internal waves with methods of the Hamiltonian water wave dynamics is presented. The internal wave formed at a pycnocline or thermocline in the ocean is influenced by the Coriolis force of the Earth's rotation. The Ostrovsky equation arises in the long waves and small amplitude approximation and for certain geophysical scales of the physical variables.


Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.) Jan 2022

Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.)

Electrical & Computer Engineering Faculty Publications

Data-driven prediction of future faults is a major research area for many industrial applications. In this work, we present a new procedure of real-time fault prediction for superconducting radio-frequency (SRF) cavities at the Continuous Electron Beam Accelerator Facility (CEBAF) using deep learning. CEBAF has been afflicted by frequent downtime caused by SRF cavity faults. We perform fault prediction using pre-fault RF signals from C100-type cryomodules. Using the pre-fault signal information, the new algorithm predicts the type of cavity fault before the actual onset. The early prediction may enable potential mitigation strategies to prevent the fault. In our work, we apply …


Computer Program Simulation Of A Quantum Turing Machine With Circuit Model, Shixin Wu Dec 2021

Computer Program Simulation Of A Quantum Turing Machine With Circuit Model, Shixin Wu

Mathematical Sciences Technical Reports (MSTR)

Molina and Watrous present a variation of the method to simulate a quantum Turing machine employed in Yao’s 1995 publication “Quantum Circuit Complexity”. We use a computer program to implement their method with linear algebra and an additional unitary operator defined to complete the details. Their method is verified to be correct on a quantum Turing machine.


Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew Feb 2021

Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

The following sections are included:

  • Present State of Computational Modelling in Fluorescence Nanoscopy

  • Recent Contributions to Computational Modelling in Fluorescence Nanoscopy

  • Outlook on Computational Modelling in Fluorescence Nanoscopy

  • Acknowledgments

  • References


Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin Jan 2021

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of …


Semiclassical Backreaction On Asymptotically Anti–De Sitter Black Holes, Peter Taylor, Cormac Breen Jan 2021

Semiclassical Backreaction On Asymptotically Anti–De Sitter Black Holes, Peter Taylor, Cormac Breen

Articles

We consider a quantum scalar field on the classical background of an asymptotically anti–de Sitter black hole and the backreaction the field’s stress-energy tensor induces on the black hole geometry. The backreaction is computed by solving the reduced-order semiclassical Einstein field equations sourced by simple analytical approximations for the renormalized expectation value of the scalar field stress-energy tensor. When the field is massless and conformally coupled, we adopt Page’s approximation to the renormalized stress-energy tensor, while for massive fields we adopt a modified version of the DeWitt-Schwinger approximation. The latter approximation must be modified so that it possesses the correct …


Aps March Meeting 2021 (Online) Updates On Scientific Research During Pandemic Times, Vianney Gimenez-Pinto Jan 2021

Aps March Meeting 2021 (Online) Updates On Scientific Research During Pandemic Times, Vianney Gimenez-Pinto

Title III Professional Development Reports

While the ongoing global pandemic continues to affect our everyday lives, researchers in Science, Technology, Engineering and Math found a way to come together at the American Physical Society (APS) March Meeting 2021. The conference was online-only and had more than 11,000 registered attendants who actively participated in the program during March 14- 19, 2021.


Five-Wave Resonances In Deep Water Gravity Waves: Integrability, Numerical Simulations And Experiments, Dan Lucas, Marc Perlin, Dian-Yong Liu, Shane Walsh, Rossen Ivanov, Miguel D. Bustamante Jan 2021

Five-Wave Resonances In Deep Water Gravity Waves: Integrability, Numerical Simulations And Experiments, Dan Lucas, Marc Perlin, Dian-Yong Liu, Shane Walsh, Rossen Ivanov, Miguel D. Bustamante

Articles

In this work we consider the problem of finding the simplest arrangement of resonant deep water gravity waves in one-dimensional propagation, from three perspectives: Theoretical, numerical and experimental. Theoretically this requires using a normal-form Hamiltonian that focuses on 5-wave resonances. The simplest arrangement is based on a triad of wave vectors K1 + K2 = K3 (satisfying specific ratios) along with their negatives, corresponding to a scenario of encountering wave packets, amenable to experiments and numerical simulations. The normal-form equations for these encountering waves in resonance are shown to be non-integrable, but they admit an integrable reduction …


A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew Feb 2020

A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Modulating the polarization of excitation light, resolving the polarization of emitted fluorescence, and point spread function (PSF) engineering have been widely leveraged for measuring the orientation of single molecules. Typically, the performance of these techniques is optimized and quantified using the Cramér-Rao bound (CRB), which describes the best possible measurement variance of an unbiased estimator. However, CRB is a local measure and requires exhaustive sampling across the measurement space to fully characterize measurement precision. We develop a global variance upper bound (VUB) for fast quantification and comparison of orientation measurement techniques. Our VUB tightly bounds the diagonal elements of the …


Pulsatile Flow Through Idealized Renal Tubules: Fluid-Structure Interaction And Dynamic Pathologies, Niksa Praljak, Shawn D. Ryan, Andrew Resnick Jan 2020

Pulsatile Flow Through Idealized Renal Tubules: Fluid-Structure Interaction And Dynamic Pathologies, Niksa Praljak, Shawn D. Ryan, Andrew Resnick

Mathematics and Statistics Faculty Publications

Kidney tubules are lined with flow-sensing structures, yet information about the flow itself is not easily obtained. We aim to generate a multiscale biomechanical model for analyzing fluid flow and fluid-structure interactions within an elastic kidney tubule when the driving pressure is pulsatile. We developed a two-dimensional macroscopic mathematical model of a single fluid-filled tubule corresponding to a distal nephron segment and determined both flow dynamics and wall strains over a range of driving frequencies and wall compliances using finite-element analysis. The results presented here demonstrate good agreement with available analytical solutions and form a foundation for future inclusion of …


Swirling Fluid Flow In Flexible, Expandable Elastic Tubes: Variational Approach, Reductions And Integrability, Rossen Ivanov, Vakhtang Putkaradze Jan 2020

Swirling Fluid Flow In Flexible, Expandable Elastic Tubes: Variational Approach, Reductions And Integrability, Rossen Ivanov, Vakhtang Putkaradze

Articles

Many engineering and physiological applications deal with situations when a fluid is moving in flexible tubes with elastic walls. In real-life applications like blood flow, a swirl in the fluid often plays an important role, presenting an additional complexity not described by previous theoretical models. We present a theory for the dynamics of the interaction between elastic tubes and swirling fluid flow. The equations are derived using a variational principle, with the incompressibility constraint of the fluid giving rise to a pressure-like term. In order to connect this work with the previous literature, we consider the case of inextensible and …


On The Intermediate Long Wave Propagation For Internal Waves In The Presence Of Currents, Joseph Cullen, Rossen Ivanov Jan 2020

On The Intermediate Long Wave Propagation For Internal Waves In The Presence Of Currents, Joseph Cullen, Rossen Ivanov

Articles

A model for the wave motion of an internal wave in the presence of current in the case of intermediate long wave approximation is studied. The lower layer is considerably deeper, with a higher density than the upper layer. The flat surface approximation is assumed. The fluids are incompressible and inviscid. The model equations are obtained from the Hamiltonian formulation of the dynamics in the presence of a depth-varying current. It is shown that an appropriate scaling leads to the integrable Intermediate Long Wave Equation (ILWE). Two limits of the ILWE leading to the integrable Benjamin-Ono and KdV equations are …


Three Possible Applications Of Neutrosophic Logic In Fundamental And Applied Sciences, Victor Christianto, Robert Neil Boyd, Florentin Smarandache Jan 2020

Three Possible Applications Of Neutrosophic Logic In Fundamental And Applied Sciences, Victor Christianto, Robert Neil Boyd, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In Neutrosophic Logic, a basic assertion is that there are variations of about everything that we can measure; the variations surround three parameters called T,I,F (truth, indeterminacy, falsehood) which can take a range of values. This paper shortly reviews the links among aether and matter creation from the perspective of Neutrosophic Logic. Once we accept the existence of aether as physical medium, then we can start to ask on what causes matter ejection, as observed in various findings related to quasars etc. One particular cosmology model known as VMH (variable mass hypothesis) has been suggested by notable astrophysicists like Halton …


A Short Remark On Vortex As Fluid Particle From Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache Jan 2020

A Short Remark On Vortex As Fluid Particle From Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In a previous paper in this journal (IJNS), it is mentioned about a possible approach to re-describe QED without renormalization route. As it is known that in literature, there are some attempts to reconcile vortex-based fluid dynamics and particle dynamics. Some attempts are not quite as fruitful as others. As a follow up to previous paper, the present paper will discuss two theorems for developing unification theories, and then point out some new proposals including by Simula (2020) on how to derive Maxwell equations in superfluid dynamics setting; this could be a new alternative approach towards “fluidicle” or “vorticle” model …


A Review On Superluminal Physics And Superluminal Communication In Light Of The Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache Jan 2020

A Review On Superluminal Physics And Superluminal Communication In Light Of The Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In a recent paper, we describe a model of quantum communication based on combining consciousness experiment and entanglement, which can serve as impetus to stop 5G-network-caused diseases. Therefore, in this paper we consider superluminal physics and superluminal communication as a bridge or intermediate way between subluminal physics and action-at-a-distance (AAAD) physics, especially from neutrosophic logic perspective. Although several ways have been proposed to bring such a superluminal communication into reality, such as Telluric wave or Telepathy analog of Horejev and Baburin, here we also review two possibilities: quaternion communication and also quantum communication based on quantum noise. Further research is …


Planck's And Callendar's Blackbody Radiation Formulas And Their Fitness To Experimental Data, Max Tran Nov 2019

Planck's And Callendar's Blackbody Radiation Formulas And Their Fitness To Experimental Data, Max Tran

Publications and Research

In this paper, we compare the blackbody radiation density formula obtained with classical physics by Hugh L Callendar and the formula obtained by Max Planck using quantization of energy. We use R and Maxima to analyze their fitness on coordinating experimental data and indicate some limitations with experiments in this area.