Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Realization Of Tensor Product And Of Tensor Factorization Of Rational Functions, Daniel Alpay, Izchak Lewkowicz Apr 2019

Realization Of Tensor Product And Of Tensor Factorization Of Rational Functions, Daniel Alpay, Izchak Lewkowicz

Mathematics, Physics, and Computer Science Faculty Articles and Research

We study the state space realization of a tensor product of a pair of rational functions. At the expense of “inflating” the dimensions, we recover the classical expressions for realization of a regular product of rational functions. Under an additional assumption that the limit at infinity of a given rational function exists and is equal to identity, we introduce an explicit formula for a tensor factorization of this function.


Evolution Of Superoscillations For Schrödinger Equation In A Uniform Magnetic Field, Fabrizio Colombo, Jonathan Gantner, Daniele C. Struppa Sep 2017

Evolution Of Superoscillations For Schrödinger Equation In A Uniform Magnetic Field, Fabrizio Colombo, Jonathan Gantner, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

Aharonov-Berry superoscillations are band-limited functions that oscillate faster than their fastest Fourier component. Superoscillations appear in several fields of science and technology, such as Aharonov’s weak measurement in quantum mechanics, in optics, and in signal processing. An important issue is the study of the evolution of superoscillations using the Schrödinger equation when the initial datum is a weak value. Some superoscillatory functions are not square integrable, but they are real analytic functions that can be extended to entire holomorphic functions. This fact leads to the study of the continuity of a class of convolution operators acting on suitable spaces of …


Four Tails Problems For Dynamical Collapse Theories, Kelvin J. Mcqueen Jan 2015

Four Tails Problems For Dynamical Collapse Theories, Kelvin J. Mcqueen

Philosophy Faculty Articles and Research

The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails …