Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Engineering Physics

Institution
Keyword
Publication Year
Publication
File Type

Articles 31 - 60 of 649

Full-Text Articles in Physics

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd Jan 2023

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd

Directivity

No abstract provided.


Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali Jan 2023

Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali

Physics Faculty Publications

Nanostructured negative electron affinity GaAs photocathodes for a polarized electron source are studied using finite difference time domain optical simulation. The structures studied are nanosquare columns, truncated nanocones, and truncated nanopyramids. Mie-type resonances in the 700–800 nm waveband, suitable for generation of polarized electrons, are identified. At resonance wavelengths, the nanostructures can absorb up to 99% of the incident light. For nanosquare columns and truncated nanocones, the maximum quantum efficiency (QE) at 780 nm obtained from simulation is 27%, whereas for simulated nanopyramids, the QE is ∼21%. The high photocathode quantum efficiency is due to the shift of Mie resonance …


Development Of A Prototype Superconducting Radio-Frequency Cavity For Conduction Cooled Accelerators, Gianluigi Ciovati, J. Anderson, S. Balachandran, G. Cheng, B. Coritron, E. Daly, P. Dhakal, Alex Gurevich, F. Hannon, K. Harding, L. Holland, F. Marhauser, K. Mclaughlin, D. Packard, T. Powers, U. Pudasaini, J. Rathke, R. Rimmer, T. Schultheiss, H. Vennekate, D. Vollmer Jan 2023

Development Of A Prototype Superconducting Radio-Frequency Cavity For Conduction Cooled Accelerators, Gianluigi Ciovati, J. Anderson, S. Balachandran, G. Cheng, B. Coritron, E. Daly, P. Dhakal, Alex Gurevich, F. Hannon, K. Harding, L. Holland, F. Marhauser, K. Mclaughlin, D. Packard, T. Powers, U. Pudasaini, J. Rathke, R. Rimmer, T. Schultheiss, H. Vennekate, D. Vollmer

Physics Faculty Publications

The higher efficiency of superconducting radio-frequency (SRF) cavities compared to normal -conducting ones enables the development of high-energy continuous-wave linear accelerators (linacs). Recent progress in the development of high-quality Nb3Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. A possible use of conduction-cooled SRF linacs is for environmental applications, requiring electron beams with energy of 1-10 MeV and 1 MW of power. We have designed a 915 MHz SRF linac for such …


Surface Properties And Rf Performance Of Vapor Diffused Nb₃Sn On Nb After Sequential Anneals Below 1000 °C, Jayendrika K. Tiskumara, Jean R. Delayen, U. Pudasaini, G. Eremeev Jan 2023

Surface Properties And Rf Performance Of Vapor Diffused Nb₃Sn On Nb After Sequential Anneals Below 1000 °C, Jayendrika K. Tiskumara, Jean R. Delayen, U. Pudasaini, G. Eremeev

Physics Faculty Publications

Nb₃Sn is a next-generation superconducting material that can be used for future superconducting radiofrequency (SRF) accelerator cavities, promising better performance, cost reduction, and higher operating temperature than Nb. The Sn vapor diffusion method is currently the most preferred and successful technique to coat niobium cavities with Nb₃Sn. Among post-coating treatments to optimize the coating quality, higher temperature annealing without Sn is known to degrade Nb₃Sn because of Sn loss. We have investigated Nb₃Sn/Nb samples briefly annealed at 800-1000 °C, for 10 and 20 minutes to potentially improve the surface to enhance the performance of Nb₃Sn-coated cavities. Following the sample studies, …


Investigation Of The Multilayer Shielding Effect Through Nbtin-Ain Coated Bulk Niobium, Iresha Harshani Senevirathne, D. R. Beverstock, A-M Valente-Feliciano, Alex Gurevich, Jean R. Delayen Jan 2023

Investigation Of The Multilayer Shielding Effect Through Nbtin-Ain Coated Bulk Niobium, Iresha Harshani Senevirathne, D. R. Beverstock, A-M Valente-Feliciano, Alex Gurevich, Jean R. Delayen

Physics Faculty Publications

We report measurements of the dc field onset Bp of magnetic flux penetration through NbTiN-AlN coating on bulk niobium using the Hall probe experimental setup. The measurements of Bp reveal the multilayer shielding effect on bulk niobium under high magnetic fields at cryogenic temperatures. We observed a significant enhancement in Bp for the NbTiN-AlN coated Nb samples as compared to bare Nb samples. The observed dependence of Bp on the coating thickness is consistent with theoretical predictions.


Magnetic Field Mapping Of A Large-Grain 1.3 Ghz Single-Cell Cavity, Ishwari Prasad Parajuli, Jean R. Delayen, Alex V. Gurevich, Gianluigi Ciovati Jan 2023

Magnetic Field Mapping Of A Large-Grain 1.3 Ghz Single-Cell Cavity, Ishwari Prasad Parajuli, Jean R. Delayen, Alex V. Gurevich, Gianluigi Ciovati

Physics Faculty Publications

A new magnetic field mapping system for 1.3 GHz single-cell cavities was developed in order to reveal the impact of ambient magnetic field and temperature gradients during cool-down on the flux trapping phenomenon. Measurements were done at 2 K for different cool-down conditions of a large-grain cavity before and after 120 °C bake. The fraction of applied magnetic field trapped in the cavity walls was ~ 50% after slow cool-down and ~ 20% after fast cool-down. The results showed a weak correlation between between trapped flux locations and hot-spots causing the high-field Q-slope. The results also showed an increase of …


Development And Performance Of Rfd Crab Cavity Prototypes For Hl-Lhc Aup, L. Listori, P. Berrutti, M. Narduzzi, A. Castilla, S. U. De Silva, J. R. Delayen, N. A. Huque, Z. Li, A. Ratti Jan 2023

Development And Performance Of Rfd Crab Cavity Prototypes For Hl-Lhc Aup, L. Listori, P. Berrutti, M. Narduzzi, A. Castilla, S. U. De Silva, J. R. Delayen, N. A. Huque, Z. Li, A. Ratti

Physics Faculty Publications

The US will be contributing to the HL-LHC upgrade at CERN with the fabrication and qualification of RFD crabbing cavities in the framework of the HL-LHC Accelerator Upgrade Project (AUP) managed by Fermilab. AUP received Critical Decision 3 (CD-3) approval by DOE in December 2020 launching the project into the production phase. The electro-magnetic design of the cavity was inherited from the LHC Accelerator Research Program (LARP) but needed to be revised to meet new project requirements and to prevent issues encountered during beam tests performed at CERN in the R&D phase. Two prototype cavities were manufactured in industry and …


Fabrication And Testing Of A Prototype Rf-Dipole Crabbing Cavity, S. U. De Silva, J. R. Delayen, H. Park Jan 2023

Fabrication And Testing Of A Prototype Rf-Dipole Crabbing Cavity, S. U. De Silva, J. R. Delayen, H. Park

Physics Faculty Publications

Crabbing cavities are essential in particle colliders to compensate the luminosity degradation due to beam collision at a crossing angle. The 952.6 MHz 2-cell rf-dipole crabbing cavity system was proposed for the Jefferson Lab Electron-Ion Collider to restore the head-on collisions of electron and proton bunches at the interaction point. A prototype cavity was designed and developed to demonstrate the performance of multi-cell rf-dipole structures. This paper presents the fabrication process and cold test results of the first 2-cell rf-dipole prototype cavity.


Eic 197 Mhz Crab Cavity Rf Optimization, Zenghai Li, Subashini U. De Silva, Jean R. Delayen, Robert A. Rimmer, Qiong Wu, Binping Xiao, Wencan Xu Jan 2023

Eic 197 Mhz Crab Cavity Rf Optimization, Zenghai Li, Subashini U. De Silva, Jean R. Delayen, Robert A. Rimmer, Qiong Wu, Binping Xiao, Wencan Xu

Physics Faculty Publications

Crab cavities, operating at 197 MHz and 394 MHz respectively, will be used to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point in the Electron Ion Collider (EIC). Both crab cavities are of the RF Dipole (RFD) shape. To meet the machine design requirements, there are a few important cavity design considerations that need to be addressed. First, to achieve stable cavity operation at the design voltages, cavity geometry details must be optimized to suppress potential multipacting. Incorporating strong HOM damping in the cavity design is required for the beam stability and …


First Use Of A Longitudinally Polarized Target With Clas12, C. D. Keith, J. Brock, C. Carlin, T. Kageya, V. Lagerquist, J. Maxwell, P. Pandey Jan 2023

First Use Of A Longitudinally Polarized Target With Clas12, C. D. Keith, J. Brock, C. Carlin, T. Kageya, V. Lagerquist, J. Maxwell, P. Pandey

Physics Faculty Publications

Run Group C comprises eight experiments utilizing the CLAS12 detector system in Hall B at Jefferson Lab to study the multidimensional partonic structure of nucleons. The experiments scatter electrons from polarized protons and neutrons in samples of solid NH3 and ND3, dynamically polarized at a temperature of 1 K in a 5 T magnetic field. After a brief description of the target system, the current status of the target and preliminary results of its performance in the experiment are presented.


Status And Future Plans For C³ R&D, Emilio A. Nanni, Martin Breidenbach, Zenghai Li, Caterina Vernieri, Faya Wang, Glen White, Mei Bai, Sergey Belomestnykh, Pushpalatha Bhat, Tim Barklow, William J. Berg, Valery Borzenets, John Byrd, Ankur Dhar, Ram C. Dhuley, Chris Doss, Joseph Duris, Auralee Edelen, Claudio Emma, Joseph Frisch, Annika Gabriel, Spenser Gessner, Carsten Hast, Chunguang Jing, Arkadiy Klebaner, Dongsung Kim, Anatoly Krasnykh, John Lewellen, Matthias Liepe, Michael Litos, Xueying Lu, Jared Maxon, David Montanari, Pietro Musumeci, Sergei Nagaitsev, Alireza Nassiri, Cho-Kuen Ng, David A. K. Othman, Marco Oriunno, Dennis Palmer, J. Ritchie Patterson, Michael E. Peskin, Thomas J. Peterson, John Power, Ji Qiang, James Rosenzweig, Vladimir Shiltsev, Muhammad Shumail, Evgenya Simakov, Emma Snively, Bruno Spataro, Sami Tantawi, Harry Van Der Graaf, Brandon Weatherford, Juhao Wu, Kent P. Wootton Jan 2023

Status And Future Plans For C³ R&D, Emilio A. Nanni, Martin Breidenbach, Zenghai Li, Caterina Vernieri, Faya Wang, Glen White, Mei Bai, Sergey Belomestnykh, Pushpalatha Bhat, Tim Barklow, William J. Berg, Valery Borzenets, John Byrd, Ankur Dhar, Ram C. Dhuley, Chris Doss, Joseph Duris, Auralee Edelen, Claudio Emma, Joseph Frisch, Annika Gabriel, Spenser Gessner, Carsten Hast, Chunguang Jing, Arkadiy Klebaner, Dongsung Kim, Anatoly Krasnykh, John Lewellen, Matthias Liepe, Michael Litos, Xueying Lu, Jared Maxon, David Montanari, Pietro Musumeci, Sergei Nagaitsev, Alireza Nassiri, Cho-Kuen Ng, David A. K. Othman, Marco Oriunno, Dennis Palmer, J. Ritchie Patterson, Michael E. Peskin, Thomas J. Peterson, John Power, Ji Qiang, James Rosenzweig, Vladimir Shiltsev, Muhammad Shumail, Evgenya Simakov, Emma Snively, Bruno Spataro, Sami Tantawi, Harry Van Der Graaf, Brandon Weatherford, Juhao Wu, Kent P. Wootton

Physics Faculty Publications

C3 is an opportunity to realize an e+e- collider for the study of the Higgs boson at √s = 250 GeV, with a well defined upgrade path to 550 GeV while staying on the same short facility footprint [2,3]. C3 is based on a fundamentally new approach to normal conducting linear accelerators that achieves both high gradient and high efficiency at relatively low cost. Given the advanced state of linear collider designs, the key system that requires technical maturation for C3 is the main linac. This paper presents the staged approach towards a …


Superconducting Non-Elliptical Cavities (Tem Cavity Designs), Subashini De Silva Jan 2023

Superconducting Non-Elliptical Cavities (Tem Cavity Designs), Subashini De Silva

Physics Faculty Publications

This lecture will present fundamental of RF to accelerate or reflect beams. The lecture will cover the electrical design method of the SRF high/medium/low beta cavities. The difference in the cavity design between TM mode and TE will be emphasized.


Modeling A Nb3Sn Cryounit In Gpt At Uitf, Sunil Pokharel, A. S. Hofler, Geoffrey A. Krafft Jan 2023

Modeling A Nb3Sn Cryounit In Gpt At Uitf, Sunil Pokharel, A. S. Hofler, Geoffrey A. Krafft

Physics Faculty Publications

Nb3Sn is a prospective material for future superconducting radio frequency (SRF) accelerator cavities. Compared to conventional niobium, the material can achieve higher quality factors, higher temperature operation, and potentially higher accelerating gradients (Eacc ≈ 96 MV/m). In this work, we performed modeling of the Upgraded Injector Test Facility (UITF) at Jefferson Lab utilizing newly constructed Nb3Sn cavities. We studied the effects of the buncher cavity and varied the gun voltage from 200-500 keV. We have calibrated and optimized the SRF cavity gradients and phases for the Nb3Sn five-cell cavities' energy gains with the …


Tuning Microwave Losses In Superconducting Resonators, Alex Gurevich Jan 2023

Tuning Microwave Losses In Superconducting Resonators, Alex Gurevich

Physics Faculty Publications

Performance of superconducting resonators, particularly cavities for particle accelerators and micro cavities and thin film resonators for quantum computations and photon detectors has been improved substantially by recent materials treatments and technological advances. As a result, the niobium cavities have reached the quality factors Q ~ 1011 at 1-2 GHz and 1.5 K and the breakdown radio-frequency (rf) fields H close to the dc superheating eld of the Meissner state. These advances raise the question whether the state-of-the-art cavities are close to the fundamental limits, what these limits actually are, and to what extent the Q and H limits …


Superheating Field In Superconductors With Nanostructured Surfaces, W. P. M. R. Pathirana, A. Gurevich Jan 2023

Superheating Field In Superconductors With Nanostructured Surfaces, W. P. M. R. Pathirana, A. Gurevich

Physics Faculty Publications

We report calculations of a dc superheating field Hsh in superconductors with nanostructured surfaces. Numerical simulations of the Ginzburg-Landau (GL) equations were performed for a superconductor with an inhomogeneous impurity concentration, a thin superconducting layer on top of another superconductor, and superconductor-insulator-superconductor (S-I-S) multilayers.The superheating field was calculated taking into account the instability of the Meissner state with a nonzero wavelength along the surface, which is essential for realistic values of the GL parameter κ. Simulations were done for the materials parameters of Nb and Nb3Sn at different values of κ and the mean free paths. We …


Light Water Sustainability Program: Optimizing Information Automation Using A New Method Based On System-Theoretic Process Analysis, Jeffrey Joe, Larry Hettinger, Marvin Dainoff, Patrick Murray, Yusuke Yamani Jan 2023

Light Water Sustainability Program: Optimizing Information Automation Using A New Method Based On System-Theoretic Process Analysis, Jeffrey Joe, Larry Hettinger, Marvin Dainoff, Patrick Murray, Yusuke Yamani

Psychology Faculty Publications

This report describes the interim progress for research supporting the design and optimization of information automation systems for nuclear power plants. Much of the domestic nuclear fleet is currently focused on modernizing technologies and processes, including transitioning toward digitalization in the control room and elsewhere throughout the plant, along with a greater use of automation, artificial intelligence, robotics, and other emerging technologies. While there are significant opportunities to apply these technologies toward greater plant safety, efficiency, and overall cost-effectiveness, optimizing their design and avoiding potential safety and performance risks depends on ensuring that human-performance-related organizational and technical design issues are …


The Computational Model Of Nanofluid Considering Heat Transfer And Entropy Generation Across A Curved And Fat Surface, Sayer Obaid Alharbi, Florentin Smarandache, Awatif M.A. Elsiddieg, Aisha M. Alqahtani, M. Riaz Khan, V. Puneeth, Nidhal Becheikh Jan 2023

The Computational Model Of Nanofluid Considering Heat Transfer And Entropy Generation Across A Curved And Fat Surface, Sayer Obaid Alharbi, Florentin Smarandache, Awatif M.A. Elsiddieg, Aisha M. Alqahtani, M. Riaz Khan, V. Puneeth, Nidhal Becheikh

Branch Mathematics and Statistics Faculty and Staff Publications

The entropy generation analysis for the nanofluid flowing over a stretching/shrinking curved region is performed in the existence of the cross-diffusion effect. The surface is also subjected to second-order velocity slip under the effect of mixed convection. The Joule heating that contributes significantly to the heat transfer properties of nanofluid is incorporated along with the heat source/sink. Furthermore, the flow is assumed to be governed by an exterior magnetic field that aids in gaining control over the flow speed. With these frameworks, the mathematical model that describes the flow with such characteristics and assumptions is framed using partial differential equations …


An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li Nov 2022

An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

Contrast transfer function (CTF) is a vital function in transmission electron microscopy (TEM). It expresses to what extent amplitudes converted from the phase changes of the diffracted waves contribute to the TEM image, including the effects of lens aberrations. Simulation is very helpful to understand the application of the function thoroughly. In this work, we develop the CTFscope as a component in the Landyne software suite, to calculate the CTF with temporal and spatial dumping envelopes for conventional TEM and to extend it to various aberrations (up to fifth order) for aberration-corrected (AC)- TEM. It also includes effects on the …


Interband Transitions And Critical Points Of Single-Crystal Thoria Compared With Urania, Christina Dugan, Lu Wang, Kai Zhang, James M. Mann, Martin M. Kimani, Wai-Ning Mei, Peter A. Dowben, James C. Petrosky Nov 2022

Interband Transitions And Critical Points Of Single-Crystal Thoria Compared With Urania, Christina Dugan, Lu Wang, Kai Zhang, James M. Mann, Martin M. Kimani, Wai-Ning Mei, Peter A. Dowben, James C. Petrosky

Faculty Publications

The interband transitions of UO2 are validated independently through cathode luminescence. A picture emerges consistent with density functional theory. While theory is generally consistent with experiment, it is evident from the comparison of UO2 and ThO2 that the choice of functional can significantly alter the bandgap and some details of the band structure, in particular at the conduction band minimum. Strictly ab initio predictions of the optical properties of the actinide compounds, based on density functional theory alone, continue to be somewhat elusive.


Remote Surface Optical Phonon Scattering In Ferroelectric Ba0.6Sr0.4Tio3 Gated Graphene, Hanying Chen, Tianlin Li, Yifei Hao, Anil Rajapitamahuni, Zhiyong Xiao, Stefan Schoeche, Mathias Schubert, Xia Hong Oct 2022

Remote Surface Optical Phonon Scattering In Ferroelectric Ba0.6Sr0.4Tio3 Gated Graphene, Hanying Chen, Tianlin Li, Yifei Hao, Anil Rajapitamahuni, Zhiyong Xiao, Stefan Schoeche, Mathias Schubert, Xia Hong

Xia Hong Publications

We report the effect of remote surface optical (RSO) phonon scattering on carrier mobility in monolayer graphene gated by ferroelectric oxide. We fabricate monolayer graphene transistors back-gated by epitaxial (001) Ba0.6Sr0.4TiO3 films, with field effect mobility up to 23,000 cm2 V−1 s−1 achieved. Switching ferroelectric polarization induces nonvolatile modulation of resistance and quantum Hall effect in graphene at low temperatures. Ellipsometry spectroscopy studies reveal four pairs of optical phonon modes in Ba0.6Sr0.4TiO3, from which we extract RSO phonon frequencies. The temperature dependence of resistivity in graphene can be well accounted for …


Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. Mccluskey, Matthew G. Colbear, James P.V. Mcconville, Shane J. Mccartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. Mcquaid, J. Marty Gregg Jun 2022

Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. Mccluskey, Matthew G. Colbear, James P.V. Mcconville, Shane J. Mccartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. Mcquaid, J. Marty Gregg

Alexei Gruverman Publications

Recently, electrically conducting heterointerfaces between dissimilar band-insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport has been thoroughly explored and fundamental aspects of conduction firmly established. Perhaps surprisingly, similar insights into conceptually much simpler conducting homointerfaces, such as the domain walls that separate regions of different orientations of electrical polarisation within the same ferroelectric band-insulator, are not nearly so well-developed. Addressing this disparity, we herein report magnetoresistance in approximately conical 180° charged domain walls, which occur in partially switched ferroelectric thin film single crystal lithium niobate. This system is ideal for such measurements: firstly, …


Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao May 2022

Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao

Publications

The long-term statistical characteristics of high-frequency quasi-monochromatic gravity waves are presented using multi-year airglow images observed at Andes Lidar Observatory (ALO, 30.3° S, 70.7° W) in northern Chile. The distribution of primary gravity wave parameters including horizontal wavelength, vertical wavelength, intrinsic wave speed, and intrinsic wave period are obtained and are in the ranges of 20–30 km, 15–25 km, 50–100 m s−1, and 5–10 min, respectively. The duration of persistent gravity wave events captured by the imager approximately follows an exponential distribution with an average duration of 7–9 min. The waves tend to propagate against the local background winds and …


Electron Traps In Ag-Doped Li2B4O7 Crystals: The Role Of Ag Interstitial Ions, Timothy D. Gustafson, Brant E. Kananen, Nancy C. Giles, Brian C. Holloway, Volodymyr T. Adamiv, Ihor M. Teslyuk, Yaroslav V. Burak, Larry E. Halliburton May 2022

Electron Traps In Ag-Doped Li2B4O7 Crystals: The Role Of Ag Interstitial Ions, Timothy D. Gustafson, Brant E. Kananen, Nancy C. Giles, Brian C. Holloway, Volodymyr T. Adamiv, Ihor M. Teslyuk, Yaroslav V. Burak, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to establish models for electron traps in Ag-doped lithium tetraborate (Li2B4O7) crystals. When exposed at room temperature to ionizing radiation, electrons are trapped at interstitial Ag+ ions and holes are trapped at Ag+ ions on Li+ sites. The trapped electrons occupy a 5s1 orbital on the interstitial Ag ions (some of the unpaired spin density is also on neighboring ions). Three EPR spectra are assigned to electrons trapped at interstitial Ag ions. Their g values are near 1.99 and they have resolved hyperfine structure …


Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman Mar 2022

Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman

Directivity

This directivity data set for a KEMAR head head-and-torso simulator (HATS) includes head orientations in 14 directions in 5° steps starting from 0° to 40° and then in 10° steps from 40° to 90°. The full spherical measurements followed at an a = 0.97 m radius with the mouth aperture at the spherical center. The sampling density and distribution followed the AES 5° dual-equiangular sampling standard, omitting the south pole (θ = 180°). Thus, each spherical directivity assessment included 36 polar-angle θ samples and 72 azimuthal-angle ϕ samples. The presented data include 22 1/3-octave bands, ranging from 80 Hz …


Flexible Dye-Sensitized Solar Cells Assisted With Lead-Free Perovskite Halide, Judy Fan Feb 2022

Flexible Dye-Sensitized Solar Cells Assisted With Lead-Free Perovskite Halide, Judy Fan

Physics Faculty Research

Dye-sensitized solar cells (DSSCs) have shown promising alternative to Si-based counterparts due to low-cost, abundant raw materials, and non-vacuum processing. Here, we report a solution-based process to create flexible DSSCs on aluminum foils. Mesoporous TiO2 electrode was directly deposited on Al foil through spin casting. After post-thermal annealing, the resultant samples render optical smooth, crack-free, and large nanocrystalline thin films. The as-prepared double-layer porous TiO2 thin film was incorporated with a porphyrin dye followed by a perovskite halide salt Cs2SnI6, as the hole transport material, replacing liquid electrolyte. A transparent conducting plastic sheet was …


Development Of Advanced Machine Learning Models For Analysis Of Plutonium Surrogate Optical Emission Spectra, Ashwin P. Rao, Phillip R. Jenkins, John D. Auxier Ii, Michael B. Shattan, Anil Patnaik Jan 2022

Development Of Advanced Machine Learning Models For Analysis Of Plutonium Surrogate Optical Emission Spectra, Ashwin P. Rao, Phillip R. Jenkins, John D. Auxier Ii, Michael B. Shattan, Anil Patnaik

Faculty Publications

This work investigates and applies machine learning paradigms seldom seen in analytical spectroscopy for quantification of gallium in cerium matrices via processing of laser-plasma spectra. Ensemble regressions, support vector machine regressions, Gaussian kernel regressions, and artificial neural network techniques are trained and tested on cerium-gallium pellet spectra. A thorough hyperparameter optimization experiment is conducted initially to determine the best design features for each model. The optimized models are evaluated for sensitivity and precision using the limit of detection (LoD) and root mean-squared error of prediction (RMSEP) metrics, respectively. Gaussian kernel regression yields the superlative predictive model with an RMSEP of …


A Modulated Structure Derived From The Xa-Type Mn2Rusn Heusler Compound, Xingzhong Li, Wen-Yong Zhang, Ralph Skomski, David J. Sellmyer Jan 2022

A Modulated Structure Derived From The Xa-Type Mn2Rusn Heusler Compound, Xingzhong Li, Wen-Yong Zhang, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

A modulated structure derived from the inverse Heusler phase (the XA-type and the disordered variant L21B-type) has been observed in rapidly quenched Mn2RuSn ribbons. The powder X-ray diffraction pattern of the quenched ribbons can be indexed as an L21B-type structure. Electron diffraction patterns of the new structure mostly resemble those of the XA-type (and the disordered variant L21B-type) structure and additional reflections with denser spacing indicate a long periodicity. Orthogonal domains of the modulated structure were revealed by a selected-area electron diffraction pattern and the corresponding dark-field transmission electron microscopy images. The structure was …


Localization Effects And Anomalous Hall Conductivity In A Disordered 3d Ferromagnet, Paul M. Shand, Y. Moua, G. Baker, Shah R. Valloppilly, Pavel V. Lukashev, Parashu Kharel Jan 2022

Localization Effects And Anomalous Hall Conductivity In A Disordered 3d Ferromagnet, Paul M. Shand, Y. Moua, G. Baker, Shah R. Valloppilly, Pavel V. Lukashev, Parashu Kharel

Nebraska Center for Materials and Nanoscience: Faculty Publications

We have prepared the Heusler alloy CoFeV0.5Mn0.5Si in bulk form via arc melting. CoFeV0.5Mn0.5Si is ferromagnetic with a Curie temperature of 657 K. The longitudinal resistivity exhibits a minimum at 150 K, which is attributable to competition between quantum interference corrections at low temperatures and inelastic scattering at higher temperatures. The magnetoresistance (MR) is positive and nearly linear at low temperatures and becomes negative at temperatures close to room temperature. The positive MR in the quantum correction regime is evidence of the presence of the enhanced electron interaction as a contributor to …


A Monolithic 3d Printed Axisymmetric Co-Flow Single And Compound Emulsion Generator, Amirreza Ghaznavi, Yang Lin, Mark Douvidzon, Adam Szmelter, Alannah Rodrigues, Malik Blackman, David Eddington, Tal Carmon, Lev Deych, Lan Yang, Jie Xu Jan 2022

A Monolithic 3d Printed Axisymmetric Co-Flow Single And Compound Emulsion Generator, Amirreza Ghaznavi, Yang Lin, Mark Douvidzon, Adam Szmelter, Alannah Rodrigues, Malik Blackman, David Eddington, Tal Carmon, Lev Deych, Lan Yang, Jie Xu

Publications and Research

We report a microfluidic droplet generator which can produce single and compound droplets using a 3D axisymmetric co-flow structure. The design considered for the fabrication of the device integrated a user-friendly and cost-effective 3D printing process. To verify the performance of the device, single and compound emulsions of deionized water and mineral oil were generated and their features such as size, generation frequency, and emulsion structures were successfully characterized. In addition, the generation of bio emulsions such as alginate and collagen aqueous droplets in mineral oil was demonstrated in this study. Overall, the monolithic 3D printed axisymmetric droplet generator could …


Enhanced Study Of Complex Systems By Unveiling Hidden Symmetries With Dynamical Visibility, Nhat Vu Minh Nguyen Jan 2022

Enhanced Study Of Complex Systems By Unveiling Hidden Symmetries With Dynamical Visibility, Nhat Vu Minh Nguyen

2022 Symposium

One of the great challenges in complex and chaotic dynamics is to reveal its deterministic structures. These temporal dynamical structures are sometimes a consequence of hidden symmetries. Detecting and understanding them can allow the study of complex systems even without knowing the full underlying mathematical description of the system. Here we introduce a new technique, called Dynamical Visibility, that quantifies temporal correlations of the dynamics based upon some symmetry conditions. This visibility measures the departure of the dynamics from internal symmetries. We apply this technique to well-known chaotic systems, such as the logistic map and the circle map, as well …