Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Engineering Physics

2016

Institution
Keyword
Publication

Articles 1 - 25 of 25

Full-Text Articles in Physics

Evolution Of Network Architecture In A Granular Material Under Compression, Lia Papadopoulous, James G. Puckett, Karen E. Daniels, Danielle S. Bassett Sep 2016

Evolution Of Network Architecture In A Granular Material Under Compression, Lia Papadopoulous, James G. Puckett, Karen E. Daniels, Danielle S. Bassett

Physics and Astronomy Faculty Publications

As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying …


Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla Sep 2016

Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla

Shireen Adenwalla Papers

The writing of micrometer-scaled exchange bias domains by local, laser heating of a thin-film heterostructure consisting of a perpendicular anisotropic ferromagnetic Co/Pd multilayer and a (0001) oriented film of the magnetoelectric antiferromagnet Cr2O3 (chromia) is reported. Exchange coupling between chromia’s boundary magnetization and the ferromagnet leads to perpendicular exchange bias. Focused scanning magneto-optical Kerr measurements are used to measure local hysteresis loops and create a map of the exchange bias distribution as a function of the local boundary magnetization imprinted in the antiferromagnetic pinning layer on field cooling. The robust boundary magnetization of the Cr2O …


Direct Bandgap Cross-Over Point Of Ge1-YSnY Grown On Si Estimated Through Temperature-Dependent Photoluminescence Studies, Thomas R. Harris, Mee-Yi Ryu, Yung Kee Yeo, Buguo Wang, C. L. Senaratne Aug 2016

Direct Bandgap Cross-Over Point Of Ge1-YSnY Grown On Si Estimated Through Temperature-Dependent Photoluminescence Studies, Thomas R. Harris, Mee-Yi Ryu, Yung Kee Yeo, Buguo Wang, C. L. Senaratne

Faculty Publications

Epitaxial Ge1-ySny (y = 0%–7.5%) alloys grown on either Si or Ge-buffered Si substrates by chemical vapor deposition were studied as a function of Sn content using temperature-dependent photoluminescence (PL). PL emission peaks from both the direct bandgap (Γ-valley) and the indirect bandgap (L-valley) to the valence band (denoted by ED and EID, respectively) were clearly observed at 125 and 175 K for most Ge1-ySny samples studied. At 300 K, however, all of the samples exhibited dominant ED emission with either very weak or no measureable EID emission. At 10 K, …


Model For Computing Kinetics Of The Graphene Edge Epitaxial Growth On Copper, Mikhail Khenner Jun 2016

Model For Computing Kinetics Of The Graphene Edge Epitaxial Growth On Copper, Mikhail Khenner

Mathematics Faculty Publications

A basic kinetic model that incorporates a coupled dynamics of the carbon atoms and dimers ona copper surface is used to compute growth of a single-layer graphene island. The speed of theisland's edge advancement on Cu[111] and Cu[100] surfaces is computed as a function of the growthtemperature and pressure. Spatially resolved concentration pro les of the atoms and dimers aredetermined, and the contributions provided by these species to the growth speed are discussed.Island growth in the conditions of a thermal cycling is studied.


Tunable Split-Ring Resonators Using Germanium Telluride, Christopher H. Kodama, Ronald Coutu Jr. Jun 2016

Tunable Split-Ring Resonators Using Germanium Telluride, Christopher H. Kodama, Ronald Coutu Jr.

Faculty Publications

We demonstrate terahertz (THz) split-ring resonator (SRR) designs with incorporated germanium telluride (GeTe) thin films. GeTe is a chalcogenide that undergoes a nonvolatile phase change from the amorphous to crystalline state at approximately 200 °C, depending on the film thickness and stoichiometry. The phase change also causes a drop in the material's resistivity by six orders of magnitude. In this study, two GeTe-incorporated SRR designs were investigated. The first was an SRR made entirely out of GeTe and the second was a gold SRR structure with a GeTe film incorporated into the gap region of the split ring. These devices …


The Evaluation And Implementation Of Magnetic Fields For Large Strain Uniaxial And Biaxial Cyclic Testing Of Magnetorheological Elastomers., Dave Gorman, Niall Murphy, Ray Ekins, Stephen Jerrams May 2016

The Evaluation And Implementation Of Magnetic Fields For Large Strain Uniaxial And Biaxial Cyclic Testing Of Magnetorheological Elastomers., Dave Gorman, Niall Murphy, Ray Ekins, Stephen Jerrams

Articles

Magnetorheological Elastomers (MREs) are “smart” materials whose physical properties are altered by the application of magnetic fields. In previous studies the properties of MREs have been evaluated under a variety of conditions, however little attention has been paid to the recording and reporting of the magnetic fields used in these tests [1]. Currently there is no standard accepted method for specifying the magnetic field applied during MRE testing. This study presents a detailed map of a magnetic field applied during MRE tests as well as providing the first comparative results for uniaxial and biaxial testing under high strain fatigue test …


Application Of Parallel Computing To Optimize Studies Of Critical Exponents In The One-Dimensional Sznajd Model, Joseph Garcia May 2016

Application Of Parallel Computing To Optimize Studies Of Critical Exponents In The One-Dimensional Sznajd Model, Joseph Garcia

Honors College

The Sznajd model (SM) is a one-dimensional voter-like model used to study consensus in systems where information flows outward from like-minded neighboring agents. Here, we introduce long-range interactions to the SM via the parameter p, where p→1 is the mean-field limit (MFL) and p→0 the one-dimensional limit (1DL). Using Monte Carlo simulations and finite size scaling analyses to characterize the exit probability for p > 0, we find a step function reliant on two p-dependent exponents. By examining the exponents' behavior in the 1DL, we comment on the functional form of the exit probability in one dimension—its nature …


Spin Polarisation Oft ̄Tγγproduction At Nlo+Ps With Gosam Interfaced To Madgraph5_Amc@Nlo, Hans Van Deurzen, Rikkert Frederix, Valentin Hirschi, Gionata Luisoni, Pierpaolo Mastrolia, Giovanni Ossola Apr 2016

Spin Polarisation Oft ̄Tγγproduction At Nlo+Ps With Gosam Interfaced To Madgraph5_Amc@Nlo, Hans Van Deurzen, Rikkert Frederix, Valentin Hirschi, Gionata Luisoni, Pierpaolo Mastrolia, Giovanni Ossola

Publications and Research

We present an interface between the multipurpose Monte Carlo toolMadGraph5_aMC@NLOand the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections topp→t ̄tHandpp→t ̄tγγmatched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.


Structure And Magnetism Of New Rare- Earth-Free Intermetallic Compounds: Fe3+Xco3−Xti2 (0 ≤ X ≤ 3), Balamurugan Balamurugan, Bhaskar Das, Manh Cuong Ngyuen, Xiaoshan Xu, Jie Zhang, Xiaozhe Zhang, Yaohua Liu, Ashfia Huq, Shah R. Valloppilly, Yunlong Jin, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer Jan 2016

Structure And Magnetism Of New Rare- Earth-Free Intermetallic Compounds: Fe3+Xco3−Xti2 (0 ≤ X ≤ 3), Balamurugan Balamurugan, Bhaskar Das, Manh Cuong Ngyuen, Xiaoshan Xu, Jie Zhang, Xiaozhe Zhang, Yaohua Liu, Ashfia Huq, Shah R. Valloppilly, Yunlong Jin, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

We report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2 , Fe5CoTi, and Fe6Ti2 with significantly improved …


Structure Of Sheared And Rotating Turbulence: Multiscale Statistics Of Lagrangian And Eulerian Accelerations And Passive Scalar Dynamics, Frank G. Jacobitz, Kai Schneider, Wouter J. T. Bos, Marie Farge Jan 2016

Structure Of Sheared And Rotating Turbulence: Multiscale Statistics Of Lagrangian And Eulerian Accelerations And Passive Scalar Dynamics, Frank G. Jacobitz, Kai Schneider, Wouter J. T. Bos, Marie Farge

School of Engineering: Faculty Scholarship

The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is …


The Metal/Organic Interface In Cobalt/Vinylidene Fluoride Heterostructures, Keith Foreman, E Echeverria, Mark A. Koten, R. M. Lindsay, N. Hong, Jeffrey E. Shield, Shireen Adenwalla Jan 2016

The Metal/Organic Interface In Cobalt/Vinylidene Fluoride Heterostructures, Keith Foreman, E Echeverria, Mark A. Koten, R. M. Lindsay, N. Hong, Jeffrey E. Shield, Shireen Adenwalla

Shireen Adenwalla Papers

Organic-based electronic devices are rapidly increasing in popularity, making it essential to understand and characterize the interface between organic materials and metallic electrodes. This work reports on the characterization of the interface between thin films of an emerging organic ferroelectric, vinylidene fluoride (VDF) oligomer, and Co, an important high Curie temperature ferromagnet. Using a wide battery of experimental techniques, it is shown that VDF oligomer thin films as thin as 15 nm can halt, or prevent, Co oxidization in atmospheric conditions, a necessary condition for device applications. Selectivity of magnetic properties, such as remanent magnetization, is enabled by the clarification …


Ferroelectric Characterization And Growth Optimization Of Thermally Evaporated Vinylidene Fluoride Thin Films, Keith Foreman, N. Hong, C. Labedz, C. Shearer, Stephen Ducharme, Shireen Adenwalla Jan 2016

Ferroelectric Characterization And Growth Optimization Of Thermally Evaporated Vinylidene Fluoride Thin Films, Keith Foreman, N. Hong, C. Labedz, C. Shearer, Stephen Ducharme, Shireen Adenwalla

Shireen Adenwalla Papers

Organic thin films have numerous advantages over inorganics in device processing and price. The large polarization of the organic ferroelectric oligomer vinylidene fluoride (VDF) could prove useful for both device applications and the investigation of fundamental physical phenomena. A VDF oligomer thin film vacuum deposition process, such as thermal evaporation, preserves film and interface cleanliness, but is challenging, with successful deposition occurring only within a narrow parameter space. We report on the optimal deposition parameters for VDF oligomer thin films, refining the parameter space for successful deposition, resulting in a high yield of robust ferroelectric films. In particular, we investigate …


Electron Diffraction Study Of Cobalt-Rich Hf-Co, Xingzhong Li, Yunlong Jin, Jeffrey E. Shield, Ralph Skomski, David J. Sellmyer Jan 2016

Electron Diffraction Study Of Cobalt-Rich Hf-Co, Xingzhong Li, Yunlong Jin, Jeffrey E. Shield, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Intermetallic compounds having compositions from HfCo4 to HfCo8 were investigated by transmission electron microscopy, selected-area electron diffraction, and energy-dispersive x-ray spectroscopy. A major crystalline phase, closely related to the orthorhombic Zr2Co11 phase in structure, has been observed in the samples with the composition ranges from HfCo6 to HfCo8. The phase, referred to as either Hf2Co11 or HfCo7 phase in the literature, is actually one common phase, having a broad composition range and referred to as μ-phase in the present paper. In addition to the μ-phase, we …


Low-Temperature Fcc To L10 Phase Transformation In Copt(Bi) Nanoparticles, Frank M. Abel, Vasilis Tzitzios, David J. Sellmeyer, George C. Hadjipanayis Jan 2016

Low-Temperature Fcc To L10 Phase Transformation In Copt(Bi) Nanoparticles, Frank M. Abel, Vasilis Tzitzios, David J. Sellmeyer, George C. Hadjipanayis

Nebraska Center for Materials and Nanoscience: Faculty Publications

This work is focused on the effects of Bi substitution on the synthesis of CoPt nanoparticles with the L10 structure using a modified organometallic approach. The structural and magnetic properties of the nanoparticles have been studied and compared directly with those of CoPt nanoparticles synthesized by the same tech- nique but in the absence of Bi substitution. The as-synthesized particles at 330 ◦C have an average size of 11.7 nm and a partially ordered L10 phase with a coercivity of 1 kOe. The coercivity is increased to 9.3 kOe and 12.4 kOe after annealing for 1 hour at 600 …


A New Method For Grain Texture Manipulation In Post-Deposition Niobium Films, J. Musson, L. Phillips, K. Macha, H. Elsayed-Ali, W. Cao Jan 2016

A New Method For Grain Texture Manipulation In Post-Deposition Niobium Films, J. Musson, L. Phillips, K. Macha, H. Elsayed-Ali, W. Cao

Electrical & Computer Engineering Faculty Publications

Niobium films are frequently grown using forms of energetic condensation, with modest substrate temperatures to control grain structure. As an alternative, energetic deposition onto a cold substrate results in a dense amorphous film, with a much larger energy density than the re-crystallized state. Re-crystallization is then performed using a pulsed UV (HIPPO) laser, with minimal damage to the substrate. In addition, a graded interface between the substrate and Nb film is created during the early stages of energetic deposition. Experimental approach and apparatus are described.


Rapid And Accurate C-V Measurements, Ji-Hong Kim, Pragya R. Shrestha, Jason P. Campbell, Jason T. Ryan, David Nminibapiel, Joseph J. Kopanski Jan 2016

Rapid And Accurate C-V Measurements, Ji-Hong Kim, Pragya R. Shrestha, Jason P. Campbell, Jason T. Ryan, David Nminibapiel, Joseph J. Kopanski

Electrical & Computer Engineering Faculty Publications

We report a new technique for the rapid measurement of full capacitance-voltage (C-V) characteristic curves. The displacement current from a 100-MHz applied sine wave, which swings from accumulation to strong inversion, is digitized directly using an oscilloscope from the MOS capacitor under test. A C-V curve can be constructed directly from this data but is severely distorted due to nonideal behavior of real measurement systems. The key advance of this paper is to extract the system response function using the same measurement setup and a known MOS capacitor. The system response correction to the measured C-V curve of the unknown …


Domain Wall Conductivity In Semiconducting Hexagonal Ferroelectric Tbmno3 Thin Films, D. J. Kim, J. G. Connell, S. S. A. Seo, Alexei Gruverman Jan 2016

Domain Wall Conductivity In Semiconducting Hexagonal Ferroelectric Tbmno3 Thin Films, D. J. Kim, J. G. Connell, S. S. A. Seo, Alexei Gruverman

Alexei Gruverman Publications

Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is …


Phase Separation In Lufeo3 Films, Shi Cao, Xiaozhe Zhang, Kishan Sinha, Wenbin Wang, Jian Wang, Peter A. Dowben, Xiaoshan Xu Jan 2016

Phase Separation In Lufeo3 Films, Shi Cao, Xiaozhe Zhang, Kishan Sinha, Wenbin Wang, Jian Wang, Peter A. Dowben, Xiaoshan Xu

Peter Dowben Publications

The structural transition at about 1000°C, from the hexagonal to the orthorhombic phase of LuFeO3, has been investigated in thin films of LuFeO3. Separation of the two structural phases of LuFeO3 occurs on a length scale of micrometer, as visualized in real space using X-ray photoemission electron microscopy. The results are consistent with X-ray diffraction and atomic force microscopy obtained from LuFeO3 thin films undergoing the irreversible structural transition from the hexagonal to the orthorhombic phase of LuFeO3, at elevated temperatures. The sharp phase boundaries between the structural phases are observed to …


Influence Of Steric Hindrance On The Molecular Packing And The Anchoring Of Quinonoid Zwitterions On Gold Surfaces, Minghui Yuan, Iori Tababe, Jean-Marie Bernard- Schaaf, Qin-Yin Shi, Vicki Schlegel, Rachel Schurhammer, Peter A. Dowben, Bernard Doudin, Lucie Routaboul, Pierre Braunstein Jan 2016

Influence Of Steric Hindrance On The Molecular Packing And The Anchoring Of Quinonoid Zwitterions On Gold Surfaces, Minghui Yuan, Iori Tababe, Jean-Marie Bernard- Schaaf, Qin-Yin Shi, Vicki Schlegel, Rachel Schurhammer, Peter A. Dowben, Bernard Doudin, Lucie Routaboul, Pierre Braunstein

Peter Dowben Publications

Driven by the huge potential of engineering the molecular band offset with highly dipolar molecules for improving charge injection into organic electrics, the anchoring of various N-alkyl substituted quinonoid zwitterions of formula C6H2 (···NHR)2 (···O)2 (R = iPr, Cy, CH2CH(Et)CH2CH2CH2CH3,. . .) on gold surfaces is studied. The N–Au interactions result in an orthogonal arrangement of the zwitterions cores with respect to the surface, and stabilize adsorbed compact rows of molecules. IR spectroscopy is used as a straightforward diagnostic tool to validate the presence of …


Scaling Of Electroresistance Effect In Fully Integrated Ferroelectric Tunnel Junctions, Mohammad Abuwasib, Haidong Lu, Tao Li, Pratyush Buragohain, Hyungwoo Lee, Chang-Beom Eom, Alexei Gruverman, Uttam Singisetti Jan 2016

Scaling Of Electroresistance Effect In Fully Integrated Ferroelectric Tunnel Junctions, Mohammad Abuwasib, Haidong Lu, Tao Li, Pratyush Buragohain, Hyungwoo Lee, Chang-Beom Eom, Alexei Gruverman, Uttam Singisetti

Alexei Gruverman Publications

Systematic investigation of the scalability for tunneling electroresistance (TER) of integrated Co/BaTiO3/SrRuO3 ferroelectric tunnel junctions (FTJs) has been performed from micron to deep submicron dimensions. Pulsed measurements of the transient currents confirm the ferroelectric switching behavior of the FTJs, while the hysteresis loops measured by means of piezoresponse force microscopy verify the scalability of these structures. Fully integrated functional FTJ devices with the size of 300×300 nm2 exhibiting a tunneling electroresistance (TER) effect of the order of 2.7×104% have been fabricated and tested. Measured current density of 75 A/cm2 for the ON state …


Electron-Ion Collider: The Next Qcd Frontier, A. Accardi, J. L. Albacete, M. Anselmino, N. Armesto, E. C. Aschenauer, A. Bacchetta, D. Boer, W. K. Brooks, T. Burton, N.-B. Chang, C. E. Hyde Jan 2016

Electron-Ion Collider: The Next Qcd Frontier, A. Accardi, J. L. Albacete, M. Anselmino, N. Armesto, E. C. Aschenauer, A. Bacchetta, D. Boer, W. K. Brooks, T. Burton, N.-B. Chang, C. E. Hyde

Physics Faculty Publications

This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades …


Lhc Crab Cavity Coupler Test Boxes, J. A. Mitchell, R. Apsimon, G. Burt, R. Calaga, A. Macpherson, E. Montesinos, S.D. Silva, A.R.J. Tutte, B.P. Xiao Jan 2016

Lhc Crab Cavity Coupler Test Boxes, J. A. Mitchell, R. Apsimon, G. Burt, R. Calaga, A. Macpherson, E. Montesinos, S.D. Silva, A.R.J. Tutte, B.P. Xiao

Physics Faculty Publications

The LHC double quarter wave (DQW) crab cavities have two different types of Higher Order Mode (HOM) couplers in addition to a fundamental power coupler (FPC). The FPC requires conditioning, so to achieve this we have designed a radio-frequency (RF) quarter wave resonator to provide high transmission between two opposing FPCs. For the HOM couplers we must ensure that the stop-band filter is positioned at the cavity frequency and that peak transmission occurs at the same frequencies as the strongest HOMs. We have designed two test boxes which preserve the cavity spectral response in order to test the couplers.


Rewriting Magnetic Phase Change Memory By Laser Heating, John Timmerwilke, Sy-Hwang Liou, Shu Fan Cheng, Alan S. Edelstein Jan 2016

Rewriting Magnetic Phase Change Memory By Laser Heating, John Timmerwilke, Sy-Hwang Liou, Shu Fan Cheng, Alan S. Edelstein

Sy-Hwang Liou Publications

Magnetic phase change memory (MAG PCM) consists of bits with different magnetic permeability values. The bits are read by measuring their effect on a magnetic probe field. Previously low permeability crystalline bits had been written in high permeability amorphous films of Metglas via laser heating. Here data is presented showing that by applying short laser pulses with the appropriate power to previously crystallized regions they can first be vitrified and then again crystallized. Thus, MAG PCM is rewriteable. Technical issues in processing the bits are discussed and results on thermal modeling are presented.


Development Of A Low-Cost Arduino-Based Sonde For Coastal Applications, Grant Lockridge, Brian Dzwonkowski, Reid Nelson, Sean P. Powers Jan 2016

Development Of A Low-Cost Arduino-Based Sonde For Coastal Applications, Grant Lockridge, Brian Dzwonkowski, Reid Nelson, Sean P. Powers

University Faculty and Staff Publications

This project addresses the need for an expansion in the monitoring of marine environments by providing a detailed description of a low cost, robust, user friendly sonde, built on Arduino Mega 2560 (Mega) and Arduino Uno (Uno) platforms. The sonde can be made without specialized tools or training and can be easily modified to meet individual application requirements. The platform allows for internal logging of multiple parameters of which conductivity, temperature, and GPS position are demonstrated. Two design configurations for different coastal hydrographic applications are highlighted to show the robust and versatile nature of this sensor platform. The initial sonde …


Modification Of The G-Phonon Mode Of Graphene By Nitrogen Doping, Pavel V. Lukashev, Liuyan Zhao, Tula R. Paudel, Theanne Schiros, Noah Hurley, Evgeny Y. Tsymbal, Aron Pinczuk, Abhay Pasupathy, Rui He Jan 2016

Modification Of The G-Phonon Mode Of Graphene By Nitrogen Doping, Pavel V. Lukashev, Liuyan Zhao, Tula R. Paudel, Theanne Schiros, Noah Hurley, Evgeny Y. Tsymbal, Aron Pinczuk, Abhay Pasupathy, Rui He

Nebraska Center for Materials and Nanoscience: Faculty Publications

The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. We …