Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Engineering Physics

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 586

Full-Text Articles in Physics

Using Numerical Methods To Screen Magnetocaloric Materials In An Active Magnetic Regenerative Cycle, Huseyin Ucar, Durga Paudyal, Ozdal Boyraz Dec 2020

Using Numerical Methods To Screen Magnetocaloric Materials In An Active Magnetic Regenerative Cycle, Huseyin Ucar, Durga Paudyal, Ozdal Boyraz

Ames Laboratory Accepted Manuscripts

A 2-dimensional numerical model of a room temperature operating Active Magnetic Regenerator (AMR) that comprises of a regenerator, hot and cold heat exchangers, heat transfer fluid is developed. The regenerator is made of a magnetocaloric material (MCM) which heats up upon applying a magnetic field, H, and cools down when the field is removed; thus, making it the most essential part of an AMR. The model takes experimentally measured ∆Tad(H,T) and the Cp(H,T) data as input and provides quantitative performance metrics of the magnetic cooling system, such as ∆Tspan and the cooling load, as output. With ...


Finite-Strain Scale-Free Phase-Field Approach To Multivariant Martensitic Phase Transformations With Stress-Dependent Effective Thresholds, Hamed Babaei, Valery I. Levitas Nov 2020

Finite-Strain Scale-Free Phase-Field Approach To Multivariant Martensitic Phase Transformations With Stress-Dependent Effective Thresholds, Hamed Babaei, Valery I. Levitas

Aerospace Engineering Publications

A scale-free phase-field model for martensitic phase transformations (PTs) at finite strains is developed as an essential generalization of small-strain models in Levitas et al. (2004) and Idesman et al. (2005). The theory includes finite elastic and transformational strains and rotations as well as anisotropic and different elastic properties of phases. The gradient energy term is excluded, and the model is applicable for any scale greater than 100 nm. The model tracks finite-width interfaces between austenite and the mixture of martensitic variants only; volume fractions of martensitic variants are the internal variables rather than order parameters. The concept of the ...


Squeezing A Prism Into A Surface: Emulating Bulk Optics With Achromatic Meta-Surfaces, Odysseas Tsilipakos, Maria Kafesaki, Eleftherios N. Economou, Costas M. Soukoulis, Thomas Koschny Oct 2020

Squeezing A Prism Into A Surface: Emulating Bulk Optics With Achromatic Meta-Surfaces, Odysseas Tsilipakos, Maria Kafesaki, Eleftherios N. Economou, Costas M. Soukoulis, Thomas Koschny

Ames Laboratory Accepted Manuscripts

Metasurfaces promise to replace bulky prisms and lenses with 2D surfaces, revolutionizing wavefront control with technologically significant advantages in size, weight, and planar fabrication. However, conventional implementations suffer from large chromatic aberrations and cannot sustain performance over practical bandwidths of real‐world signals because of the limited phase modulation margin available in a surface. How can an infinitely thin surface generate the arbitrarily large, broadband phase delay that bulk phase accumulation can provide? Here, equivalence between bulk optics and certain multiresonant metasurfaces is demonstrated, where phase delay arises from trains of multiple resonances in the effective sheet conductivities of the ...


Substitutional And Interstitial Doping In Laco5 System For The Development Of Hard Magnetic Properties: A First Principles Study, Huseyin Ucar, Renu Choudhary, Durga Paudyal Sep 2020

Substitutional And Interstitial Doping In Laco5 System For The Development Of Hard Magnetic Properties: A First Principles Study, Huseyin Ucar, Renu Choudhary, Durga Paudyal

Ames Laboratory Accepted Manuscripts

We investigate here the changes in the electronic structure at the transition metal sites of the RE-TM5 structure (RE = Rare Earth, TM = Transition Metal) while doping the interstitial sites with nitrogen. LaCo5 compound is taken as the baseline compound owing to its critically needed intrinsic magnetic properties such as magneto-crystalline anisotropy energy (MAE) of ≈5 meV/fu [1] due to the contributions from the cobalt network. In addition, because of the lack of 4f electrons in lanthanum, complications originating from the treatment of the 4f localized electrons are absent in this compound; making it an ideal reference material to all ...


Viable Materials With A Giant Magnetocaloric Effect, Nikolai A. Zarkevich, Vladimir I. Zverev Sep 2020

Viable Materials With A Giant Magnetocaloric Effect, Nikolai A. Zarkevich, Vladimir I. Zverev

Ames Laboratory Accepted Manuscripts

This review of the current state of magnetocalorics is focused on materials exhibiting a giant magnetocaloric response near room temperature. To be economically viable for industrial applications and mass production, materials should have desired useful properties at a reasonable cost and should be safe for humans and the environment during manufacturing, handling, operational use, and after disposal. The discovery of novel materials is followed by a gradual improvement of properties by compositional adjustment and thermal or mechanical treatment. Consequently, with time, good materials become inferior to the best. There are several known classes of inexpensive materials with a giant magnetocaloric ...


Instability And Evolution Of The Magnetic Ground State In Metallic Perovskites Gdrh3c1-Xbx, Abhishek Pandey, A. K. Singh, Shovan Dane, K. Ghosh, I. Das, S. Tripathi, U. Kumar, R. Ranganathan, David C. Johnston, Chandan Mazumdar Aug 2020

Instability And Evolution Of The Magnetic Ground State In Metallic Perovskites Gdrh3c1-Xbx, Abhishek Pandey, A. K. Singh, Shovan Dane, K. Ghosh, I. Das, S. Tripathi, U. Kumar, R. Ranganathan, David C. Johnston, Chandan Mazumdar

Ames Laboratory Accepted Manuscripts

We report investigations of the structural, magnetic, electrical transport, and thermal properties of five compositions of the metallic perovskite GdRh3C1−xBx (0.00≤x≤1.00). Our results show that all five compositions undergo magnetic ordering at low temperatures, but the nature of the ordered state is significantly different in the carbon- and the boron-rich compositions, where the former shows signatures of an amplitude-modulated magnetic structure and the latter exhibits evidence of an equal-moment incommensurate antiferromagnetic ordering. We also observe a remarkable field-dependent evolution of conduction carrier polarization in the compositionally disordered compounds. The outcomes indicate that this system is ...


Magnetic Phase Transitions In Eu(Co1-Xnix)(2-Y)As-2 Single Crystals, N. Sangeetha, Santanu Pakhira, D. H. Ryan, V. Smetana, A.-V. Mudring, Duane D. Johnson Aug 2020

Magnetic Phase Transitions In Eu(Co1-Xnix)(2-Y)As-2 Single Crystals, N. Sangeetha, Santanu Pakhira, D. H. Ryan, V. Smetana, A.-V. Mudring, Duane D. Johnson

Ames Laboratory Accepted Manuscripts

The effects of Ni doping in Eu(Co1-xNix)(2-y)As-2 single crystals with x = 0 to 1 grown out of self-flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragonal ThCr2Si2 structure with space group I4/mmm. We also find 3%-4% of randomly distributed vacancies on the Co/Ni site. Anisotropic magnetic susceptibility chi(alpha) (alpha = ab, c) data versus temperature T show clear signatures of an antiferromagnetic (AFM) c-axis helix structure associated with the Eu+2 spins 7/2 for x = 0 and 1 as previously reported. The chi(alpha)(T) data ...


Fifth-Degree Elastic Energy For Predictive Continuum Stress–Strain Relations And Elastic Instabilities Under Large Strain And Complex Loading In Silicon, Hao Chen, Nikolai A. Zarkevich, Valery I. Levitas, Duane D. Johnson, Xiancheng Zhang Aug 2020

Fifth-Degree Elastic Energy For Predictive Continuum Stress–Strain Relations And Elastic Instabilities Under Large Strain And Complex Loading In Silicon, Hao Chen, Nikolai A. Zarkevich, Valery I. Levitas, Duane D. Johnson, Xiancheng Zhang

Aerospace Engineering Publications

Materials under complex loading develop large strains and often phase transformation via an elastic instability, as observed in both simple and complex systems. Here, we represent a material (exemplified for Si I) under large Lagrangian strains within a continuum description by a 5th-order elastic energy found by minimizing error relative to density functional theory (DFT) results. The Cauchy stress—Lagrangian strain curves for arbitrary complex loadings are in excellent correspondence with DFT results, including the elastic instability driving the Si I → II phase transformation (PT) and the shear instabilities. PT conditions for Si I → II under action of cubic axial ...


Reshaping Of Truncated Pd Nanocubes: Energetic And Kinetic Analysis Integrating Transmission Electron Microscopy With Atomistic-Level And Coarse-Grained Modeling, King C. Lai, Minda Chen, Benjamin Williams, Yong Han, Chia-Kuang Tsung, Wenyu Huang, James W. Evans Jul 2020

Reshaping Of Truncated Pd Nanocubes: Energetic And Kinetic Analysis Integrating Transmission Electron Microscopy With Atomistic-Level And Coarse-Grained Modeling, King C. Lai, Minda Chen, Benjamin Williams, Yong Han, Chia-Kuang Tsung, Wenyu Huang, James W. Evans

Chemistry Publications

Stability against reshaping of metallic fcc nanocrystals synthesized with tailored far-from-equilibrium shapes is key to maintaining optimal properties for applications such as catalysis. Yet Arrhenius analysis of experimental reshaping kinetics, and appropriate theory and simulation, is lacking. Thus, we use TEM to monitor the reshaping of Pd nanocubes of ∼25 nm side length between 410 °C (over ∼4.5 h) and 440 °C (over ∼0.25 h), extracting a high effective energy barrier of Eeff ≈ 4.6 eV. We also provide an analytic determination of the energy variation along the optimal pathway for reshaping that involves transfer of atoms across ...


Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati Jun 2020

Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Mathematics and Statistics Faculty and Staff Publications

No abstract provided.


Non-Equilibrium Growth Of Metal Clusters On A Layered Material: Cu On Mos2, Dapeng Jing, Ann Lii-Rosales, King C. Lai, Qiang Li, Jaeyoun Kim, Michael C. Tringides, James W. Evans, Patricia A. Thiel May 2020

Non-Equilibrium Growth Of Metal Clusters On A Layered Material: Cu On Mos2, Dapeng Jing, Ann Lii-Rosales, King C. Lai, Qiang Li, Jaeyoun Kim, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

We use a variety of experimental techniques to characterize Cu clusters on bulk MoS2 formed via physical vapor deposition of Cu in ultrahigh vacuum, at temperatures ranging from 300 K to 900 K. We find that large facetted clusters grow at elevated temperatures, using high Cu exposures. The cluster size distribution is bimodal, and under some conditions, large clusters are surrounded by a denuded zone. We propose that defect-mediated nucleation, and coarsening during deposition, are both operative in this system. At 780 K, a surprising type of facetted cluster emerges, and at 900 K this type predominates: pyramidal clusters with ...


Design And Construction Of A Computer Controlled Astronomical Spectropolarimeter, Jacob Marchio May 2020

Design And Construction Of A Computer Controlled Astronomical Spectropolarimeter, Jacob Marchio

Honors College

A theoretical description of a simple optical train, modulated signal based spectropolarimeter is discussed. The design includes, after the telescope optical tube (in this case, a 9.25” Schmidt Cassegrain), a rotating quarter waveplate (compensator), a fixed linear polarizer (analyzer), and transmission grating of 100l/mm, with a ZWO ASI290mm astronomical camera. The practical constraints on implementing such an instrument are discussed, and the construction of the spectropolarimeter is detailed, including the necessary optics, optomechanics, and electromechanics. The rotation and recording of the rotating compensator is facilitated by a motorized connection with proportional feedback control, and the uncertainty in measuring ...


Single-Atom-Layer Traps In A Solid Electrolyte For Lithium Batteries, Feng Zhu, Md Shafiqul Islam, Lin Zhou, Zhenqi Gu, Ting Liu, Xinchao Wang, Jun Luo, Ce-Wen Nan, Yifei Mo, Cheng Ma Apr 2020

Single-Atom-Layer Traps In A Solid Electrolyte For Lithium Batteries, Feng Zhu, Md Shafiqul Islam, Lin Zhou, Zhenqi Gu, Ting Liu, Xinchao Wang, Jun Luo, Ce-Wen Nan, Yifei Mo, Cheng Ma

Ames Laboratory Accepted Manuscripts

In order to fully understand the lithium-ion transport mechanism in solid electrolytes for batteries, not only the periodic lattice but also the non-periodic features that disrupt the ideal periodicity must be comprehensively studied. At present only a limited number of non-periodic features such as point defects and grain boundaries are considered in mechanistic studies. Here, we discover an additional type of non-periodic feature that significantly influences ionic transport; this feature is termed a “single-atom-layer trap” (SALT). In a prototype solid electrolyte Li0.33La0.56TiO3, the single-atom-layer defects that form closed loops, i.e., SALTs, are found ubiquitous by atomic-resolution electron ...


Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos Mar 2020

Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos

Open Educational Resources

Concepts covered in the undergraduate electrical engineering class of electromagnetics


Agenda, Revised, Shubha Tewari Jan 2020

Agenda, Revised, Shubha Tewari

Science and Engineering Saturday Seminars

Materials from the seminars. The agenda was revised to include online sessions due to the Covid-19 pandemic.


Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben Jan 2020

Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben

Peter Dowben Publications

We report the experimental evidence of evolving lattice distortion in high quality epitaxial orthorhombic SrIrO3(001) thin films fully strained on (001) SrTiO3 substrates. Angle-resolved X-ray photoemission spectroscopy studies show that the surface layer of 5 nm SrIrO3 films is Sr–O terminated, and subsequent layers recover the semimetallic state, with the band structure consistent with an orthorhombic SrIrO3(001) having the lattice constant of the substrate. While there is no band folding in the experimental band structure, additional super-periodicity is evident in low energy electron diffraction measurements, suggesting the emergence of a transition layer with crystal symmetry evolving from ...


Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman Jan 2020

Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman

Faculty Publications from Nebraska Center for Materials and Nanoscience

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention.

Methods: Herein, we created multimodal rilpivirine (RPV) 177lutetium labeled bismuth sulfide nanorods (177LuBSNRs) then evaluated their structure, morphology, configuration, chemical composition, biological responses and adverse reactions. Particle biodistribution was analyzed by single photon emission ...


Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li Jan 2020

Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li

Faculty Publications from Nebraska Center for Materials and Nanoscience

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software ...


Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer Jan 2020

Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer

Faculty Publications from Nebraska Center for Materials and Nanoscience

Magnets with chiral crystal structures and helical spin structures have recently attracted much attention as potential spin-electronics materials, but their relatively low magnetic-ordering temperatures are a disadvantage. While cobalt has long been recognized as an element that promotes high-temperature magnetic ordering, most Co-rich alloys are achiral and exhibit collinear rather than helimagnetic order. Crystallographically, the B20-ordered compound CoSi is an exception due to its chiral structure, but it does not exhibit any kind of magnetic order. Here, we use nonequilibrium processing to produce B20-ordered Co1+xSi1−x with a maximum Co solubility of x = 0.043. Above ...


Observation Of In-Plane Magnetic Field Induced Phase Transitions In Fese, Jong Mok Ok, Chang Il Kwon, Yoshimitsu Kohama, Jung Sang You, Sun Kyu Park, Ji-Hye Kim, Y.J. Jo, E.S. Choi, Koichi Kindo, Woun Kang, Ki-Seok Kim, E. G. Moon, Alex Gurevich, Jun Sung Kim Jan 2020

Observation Of In-Plane Magnetic Field Induced Phase Transitions In Fese, Jong Mok Ok, Chang Il Kwon, Yoshimitsu Kohama, Jung Sang You, Sun Kyu Park, Ji-Hye Kim, Y.J. Jo, E.S. Choi, Koichi Kindo, Woun Kang, Ki-Seok Kim, E. G. Moon, Alex Gurevich, Jun Sung Kim

Physics Faculty Publications

We investigate thermodynamic properties of FeSe under in-plane magnetic fields using torque magnetometry, specific heat, and magnetocaloric measurements. Below the upper critical field Hc2, we observed the field induced anomalies at H1 ∼ 15 T and H2 ∼ 22 T near H ∥ ab and below a characteristic temperature T* ∼ 2 K. The transition magnetic fields H1 and H2 exhibit negligible dependence on both temperature and field orientation. This contrasts to the strong temperature and angle dependence of Hc2, suggesting that these anomalies are attributed to the field induced phase transitions, originating from the inherent spin-density-wave instability ...


Developing A High Resolution Zdc For The Eic, J. H. Lee, T. Sako, K. Tanida, M. Murray, Q. Wang, N. Nickel, Y. Yamazaki, Y. Itow, H. Menjo, T. Shibata, C. E. Hyde, V. Baturin, Y. Goto, I. Nakagawa, R. Seidl, K. Kawade, A. Deshpande, B. Schmookler, K. Nakano, T. Chujo, Y. Miyachi Jan 2020

Developing A High Resolution Zdc For The Eic, J. H. Lee, T. Sako, K. Tanida, M. Murray, Q. Wang, N. Nickel, Y. Yamazaki, Y. Itow, H. Menjo, T. Shibata, C. E. Hyde, V. Baturin, Y. Goto, I. Nakagawa, R. Seidl, K. Kawade, A. Deshpande, B. Schmookler, K. Nakano, T. Chujo, Y. Miyachi

Physics Faculty Publications

The Electron Ion Collider offers the opportunity to make un-paralleled multidimen- sional measurements of the spin structure of the proton and nuclei, as well as a study of the onset of partonic saturation at small Bjorken-x [1]. An important requirement of the physics program is the tagging of spectator neutrons and the identification of forward photons. We propose to design and build a Zero Degree Calorimeter, or ZDC, to measure photons and neutrons with excellent energy & position resolution.


Quasiperiodic Ordering In Thick Sn Layer On I-Al-Pd-Mn: A Possible Quasicrystalline Clathrate, Vipin Kumar Singh, Marek Mihalkovic, Marian Krajci, Shuvam Sarkar, Pampa Sadhukhan, M. Maniraj, Abhishek Rai, Katariina Pussi, Deborah L. Schlagel, Thomas A. Lograsso, Ajay Kumar Shukla, Sudipta Roy Barman Jan 2020

Quasiperiodic Ordering In Thick Sn Layer On I-Al-Pd-Mn: A Possible Quasicrystalline Clathrate, Vipin Kumar Singh, Marek Mihalkovic, Marian Krajci, Shuvam Sarkar, Pampa Sadhukhan, M. Maniraj, Abhishek Rai, Katariina Pussi, Deborah L. Schlagel, Thomas A. Lograsso, Ajay Kumar Shukla, Sudipta Roy Barman

Ames Laboratory Accepted Manuscripts

Realization of an elemental solid-state quasicrystal has remained a distant dream so far in spite of extensive work in this direction for almost two decades. In the present work, we report the discovery of quasiperiodic ordering in a thick layer of elemental Sn grown on icosahedral (i)-Al-Pd-Mn. The scanning tunneling microscopy (STM) images and the low-energy electron diffraction patterns of the Sn layer show specific structural signatures that portray quasiperiodicity but are distinct from the substrate. Photoemission spectroscopy reveals the existence of the pseudogap around the Fermi energy up to the maximal Sn thickness. The structure of the Sn ...


The First-Order Magnetoelastic Transition In Eu2in: A 151eu Mössbauer Study, D. H. Ryan, Durga Paudyal, Francois Guillou, Yaroslav Mudryk, Arjun K. Pathak, Vitalij K. Pecharsky Dec 2019

The First-Order Magnetoelastic Transition In Eu2in: A 151eu Mössbauer Study, D. H. Ryan, Durga Paudyal, Francois Guillou, Yaroslav Mudryk, Arjun K. Pathak, Vitalij K. Pecharsky

Ames Laboratory Accepted Manuscripts

Our 151Eu Mössbauer investigation of Eu2In and Eu2Sn shows that the europium in both materials is fully divalent. We confirm the distinct thermodynamic orders of the magnetic transitions and reveal a remarkable difference between the magnetic environments of the europium atoms in the two compounds. Possible structural and electronic origins for these differences are discussed using DFT calculations.


Microstructure Evolution During Near-Tg Annealing And Its Effect On Shear Banding In Model Alloys, Meng-Hao Yang, Bei Cai, Yang Sun, Feng Zhang, Yi-Fan Wang, Cai-Zhuang Wang, Kai-Ming Ho Dec 2019

Microstructure Evolution During Near-Tg Annealing And Its Effect On Shear Banding In Model Alloys, Meng-Hao Yang, Bei Cai, Yang Sun, Feng Zhang, Yi-Fan Wang, Cai-Zhuang Wang, Kai-Ming Ho

Ames Laboratory Accepted Manuscripts

By performing extensive molecular dynamics simulations, we investigate the deformation behavior in Al90Sm10 and Cu64.5Zr35.5 alloys after elongated isothermal annealing in the vicinity of the glass-transition temperature (Tg). Different microstructural response to the annealing process was observed: Al90Sm10 maintains the glassy structure with improved energetic stability, enhanced short-range order (SRO), and a more pronounced spatial network that extends beyond the first atomic shell, while Cu64.5Zr35.5 forms nanocrystalline Laves Cu2Zr phases. Shear banding occurs in both annealed systems under shear loading. For Al90Sm10, the spatial network formed by the local clusters characterizing the SRO of the system ...


Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans Oct 2019

Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans

Ames Laboratory Accepted Manuscripts

Diffusion and coalescence of supported 3D metal nanoclusters (NCs) leads to Smoluchowski Ripening (SR), a key pathway for catalyst degradation. Variation of the NC diffusion coefficient, DN, with size N (in atoms) controls SR kinetics. Traditionally, a form DN ∼ N−β was assumed consistent with mean-field analysis. However, KMC simulation of a stochastic model for diffusion of {100}-epitaxially supported fcc NCs mediated by surface diffusion reveals instead a complex oscillatory decrease of DN with N. Barriers for surface diffusion of metal atoms across and between facets, along step edges, etc., in this model are selected to accurately capture behavior ...


Rational Design Of Photoelectrodes For Photoelectrochemical Water Splitting And Co2 Reduction, Yu Hui Lui, Bowei Zhang, Shan Hu Oct 2019

Rational Design Of Photoelectrodes For Photoelectrochemical Water Splitting And Co2 Reduction, Yu Hui Lui, Bowei Zhang, Shan Hu

Mechanical Engineering Publications

Solar energy has promising potential for building sustainable society. Conversion of solar energy into solar fuels plays a crucial role in overcoming the intermittent nature of the renewable energy source. A photoelectrochemical (PEC) cell that employs semiconductor as photoelectrode to split water into hydrogen or fixing carbon dioxide (CO2) into hydrocarbon fuels provides great potential to achieve zero-carbon-emission society. A proper design of these semiconductor photoelectrodes thus directly influences the performance of the PEC cell. In this review, we investigate the strategies that have been put towards the design of efficient photoelectrodes for PEC water splitting and CO2 reduction in ...


Atomically Resolved Domain Boundary Structure In Lead Zirconate-Based Antiferroelectrics, Tao Ma, Zhongming Fan, Xiaoli Tan, Lin Zhou Sep 2019

Atomically Resolved Domain Boundary Structure In Lead Zirconate-Based Antiferroelectrics, Tao Ma, Zhongming Fan, Xiaoli Tan, Lin Zhou

Materials Science and Engineering Publications

Domain boundary (DB) structures are of great importance for understanding the structure-property relationship in many ferroic crystals. Here, we present atomically resolved DB configurations in PbZrO3-based antiferroelectric ceramics. The Pb-cation displacement relative to B-site cations is precisely determined using aberration-corrected scanning transmission electron microscopy. We find that 90° DBs in undoped PbZrO3 can be as thin as one primitive cell of the perovskite structure, often appearing curved or zigzagged due to the complex dipole arrangement. In a chemically modified composition, Pb0.99Nb0.02[(Zr0.57Sn0.43)0.95Ti0.05]0.98O3, in which incommensurate modulations are present, the DB has ...


Fast And Effective Techniques For Lwir Radiative Transfer Modeling: A Dimension-Reduction Approach, Nicholas M. Westing, Brett J. Borghetti, Kevin C. Gross Aug 2019

Fast And Effective Techniques For Lwir Radiative Transfer Modeling: A Dimension-Reduction Approach, Nicholas M. Westing, Brett J. Borghetti, Kevin C. Gross

Faculty Publications

The increasing spatial and spectral resolution of hyperspectral imagers yields detailed spectroscopy measurements from both space-based and airborne platforms. These detailed measurements allow for material classification, with many recent advancements from the fields of machine learning and deep learning. In many scenarios, the hyperspectral image must first be corrected or compensated for atmospheric effects. Radiative Transfer (RT) computations can provide look up tables (LUTs) to support these corrections. This research investigates a dimension-reduction approach using machine learning methods to create an effective sensor-specific long-wave infrared (LWIR) RT model.


Investigating Ions’ Effects On The Fluorescent Protein Dendra2, Benjamin Waterman Aug 2019

Investigating Ions’ Effects On The Fluorescent Protein Dendra2, Benjamin Waterman

Honors College

While superresolution microscopy has opened the doors to insights into biological phenomena we couldn’t have dreamed of in the last century, its methodology is naturally limited. We aim to push the envelope of its capabilities by testing the effect that Ca2+ and H+ ions have on the fluorescent protein Dendra2. Utilizing a newly designed perfusion chamber, we flow separate solutions containing Ca2+ and H+ ions into a cellular environment, in which the cells in question have been tagged with Dendra2. Utilizing the superresolution technique known as Spectral Fluorescence Photoactivation Localization Microscopy, we are able to obtain information about the ...


Optoelectronic Properties Of Methyl-Terminated Germanane, Clément Livache, Bradley J. Ryan, Utkarsh Ramesh, Violette Steinmetz, Charlie Gréboval, Audrey Chu, Thibault Brule, Sandrine Ithurria, Geoffrey Prévot, Thierry Barisien, Abdelkarim Ouerghi, Matthew G. Panthani, Emmanuel Lhuillier Aug 2019

Optoelectronic Properties Of Methyl-Terminated Germanane, Clément Livache, Bradley J. Ryan, Utkarsh Ramesh, Violette Steinmetz, Charlie Gréboval, Audrey Chu, Thibault Brule, Sandrine Ithurria, Geoffrey Prévot, Thierry Barisien, Abdelkarim Ouerghi, Matthew G. Panthani, Emmanuel Lhuillier

Chemical and Biological Engineering Publications

Germanane is a two-dimensional, strongly confined form of germanium. It presents an interesting combination of (i) ease of integration with CMOS technology, (ii) low toxicity, and (iii) electronic confinement which transforms the indirect bandgap of the bulk material into a direct bandgap featuring photoluminescence. However, the optoelectronic properties of this material remain far less investigated than its structural properties. Here, we investigate the photoluminescence and transport properties of arrays of methyl-terminated germanane flakes. The photoluminescence appears to have two contributions, one from the band edge and the other from trap states. The dynamics of the exciton appear to be in ...