Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Open Access Dissertations

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 31 - 60 of 93

Full-Text Articles in Physics

Elastic Waves Along A Fracture Intersection, Bradley C. Abell Apr 2015

Elastic Waves Along A Fracture Intersection, Bradley C. Abell

Open Access Dissertations

Fractures and fracture networks play a significant role in the subsurface hydraulic connectivity within the Earth. While a significant amount of research has been performed on the seismic response of single fractures and sets of fractures, few studies have examined the effect of fracture intersections on elastic wave propagation. Intersections play a key role in the connectivity of a fracture network that ultimately affects the hydraulic integrity of a rock mass. In this dissertation two new types of coupled waves are examined that propagate along intersections. 1) A coupled wedge wave that propagates along a surface fracture with particle motion …


Circular Bessel Field Statistics And The Pursuit Of Far-Subwavelength Resolution, Yulu Chen Apr 2015

Circular Bessel Field Statistics And The Pursuit Of Far-Subwavelength Resolution, Yulu Chen

Open Access Dissertations

The statistical description of wave propagation in random media is important for many applications. While polarized light in systems with weakly interacting scatterers and sufficient overall scatter has zero-mean circular Gaussian statistics, the underlying assumptions break down in the Anderson localization and weakly scattering regimes. Although probability density functions for wave intensity and amplitude exist beyond Gaussian statistics, suitable statistical descriptions for the field with strong and weak random scatter were unknown. The first analytical probability density function for the field that is effective in both the Anderson localization regime and the weakly scattering regime is derived by modeling the …


An Investigation Into The Phenomenological Relation Between Solar Activity And Nuclear Beta-Decay Rates, Tasneem M. Mohsinally Apr 2015

An Investigation Into The Phenomenological Relation Between Solar Activity And Nuclear Beta-Decay Rates, Tasneem M. Mohsinally

Open Access Dissertations

We investigate experimental evidence for time-varying nuclear decay rates, in contrast to the widely-accepted view that nuclear decaying isotopes disintegrate at a constant rate unaffected by external conditions. We study several past cases of radioactive isotopes exhibiting annual periodicities in their decay rates, presumably related to the annual variation in Earth-Sun distance. Following recent indications of shorter-lived anomalies in 54Mn decay rates concomitant with an X-class flare in 2006, we attempt to design and develop a series of unique signal detection algorithms to identify regions of anomalous activity in a nuclear decay signal. With stringent threshold cut-offs and filtering …


The Dynamics Of Ultracold Atoms In Light-Induced Synthetic Gauge Fields, Abraham J. Olson Apr 2015

The Dynamics Of Ultracold Atoms In Light-Induced Synthetic Gauge Fields, Abraham J. Olson

Open Access Dissertations

A central aim of this research is to study the dynamics of ultracold atoms in synthetic gauge fields. In this work, we developed a method to optimize the evaporation of ultracold atoms to the Bose-Einstein condensate (BEC) phase. We implement a model of atomic evaporation in a trapping potential, and we find optimal parameters for the trap depth and stiffness during evaporation. Using this model, we achieve a high efficiency of optical evaporation (γ eff = 4.0).^ Using that BEC, we study the dynamics of the BEC in various light-induced synthetic gauge fields. In particular, we have studied the transition …


Experiments With Synthetic Spin-Orbit Coupling And Spin Transport In Bose Einstein Condensates, Robert John Niffenegger Apr 2015

Experiments With Synthetic Spin-Orbit Coupling And Spin Transport In Bose Einstein Condensates, Robert John Niffenegger

Open Access Dissertations

In this thesis I will describe my experiments to study spin transport of spin Bose Einstein Condensates (BECs) with synthetic spin-orbit coupling. First I will describe procedures used to reproduce previous experiments with synthetic gauge fields in Bose-Einstein Condensates, from constant vector potentials to synthetic electric fields and synthetic spin-orbit coupling as well as all of the necessary calibration experiments. Next I will describe new experiments measuring spin transport induced by synthetic spin-dependent electric fields in spin-orbit coupled Bose-Einstein Condensates (BECs). The one dimensional (1D) spin-orbit coupling (SOC) is created with counter propagating Raman lasers which couple hyperfine sub-levels and …


Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson Apr 2015

Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson

Open Access Dissertations

The unparalleled quality of GaAs/AlGaAs heterostructures grown by molecular beam epitaxy has enabled a wide range of experiments probing interaction effects in two-dimensional electron and hole gases. This dissertation presents work aimed at further understanding the key material-related issues currently limiting the quality of these 2D systems, particularly in relation to the fractional quantum Hall effect in the 2nd Landau level and spin-based implementations of quantum computation.^ The manuscript begins with a theoretical introduction to the quantum Hall effect which outlines the experimental conditions necessary to study the physics of interest and motivates the use of the semiconductor growth …


Measurement Of The Drell--Yan Differential Cross Section With The Cms Detector At The Lhc, Alexey Svyatkovskiy Jan 2015

Measurement Of The Drell--Yan Differential Cross Section With The Cms Detector At The Lhc, Alexey Svyatkovskiy

Open Access Dissertations

This thesis describes precision measurements of electroweak interactions in a new energy regime and the application of these measurements to improve our understanding of the structure of the proton. The results are based on proton-proton collision data at √s = 7 and 8\TeV recorded with the Compact Muon Solenoid detector at the CERN Large Hadron Collider during the first years of operation. Measurements of the differential Drell–Yan cross section in the dimuon and dielectron channels covering the dilepton mass range of 15 to 2000\GeV and absolute dilepton rapidity from 0 to~2.4 are presented. The Drell–Yan cross section in proton-proton …


Novel Techniques For Quasi Three-Dimensional Nanofabrication Of Transformation Optics Devices, Paul R. West Jan 2015

Novel Techniques For Quasi Three-Dimensional Nanofabrication Of Transformation Optics Devices, Paul R. West

Open Access Dissertations

Current nanofabrication is almost exclusively limited to top-down, two-dimensional techniques. As technology moves more deeply into the nano-scale regime, fabrication of new devices with quasi three-dimensional geometries shows great potential. One excellent example of an emerging field that requires this type of non-conformal 3D fabrication technique is the field of Transformation Optics. This field involves transforming and manipulating the optical space through which light propagates. Arbitrarily manipulating the optical space requires advanced fabrication techniques, which are not possible with current two-dimensional fabrication technologies. One step toward quasi three-dimensional nanofabrication involves employing angled deposition allowing new growth mechanisms, and enabling a …


Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park Oct 2014

Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park

Open Access Dissertations

The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the continuous downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Hence, novel devices and better channel materials than Si are considered to improve the metal-oxide-semiconductor field-effect transistors (MOSFETs) device performance. III-V compound semiconductors and multi-gate structures are being considered as promising candidates in the next CMOS technology. III-V and Si nano-scale transistors in different architectures are investigated (1) to compare the performance between InGaAs of III-V compound semiconductors and …


Structural Characterization Of Multimetallic Nanoparticles, Vineetha Mukundan Oct 2014

Structural Characterization Of Multimetallic Nanoparticles, Vineetha Mukundan

Open Access Dissertations

Bimetallic and trimetallic alloy nanoparticles have enhanced catalytic activities due to their unique structural properties. Using in situ time-resolved synchrotron based x-ray diffraction, we investigated the structural properties of nanoscale catalysts undergoing various heat treatments. Thermal treatment brings about changes in particle size, morphology, dispersion of metals on support, alloying, surface electronic properties, etc. First, the mechanisms of coalescence and grain growth in PtNiCo nanoparticles supported on planar silica on silicon were examined in detail in the temperature range 400-900°C. The sintering process in PtNiCo nanoparticles was found to be accompanied by lattice contraction and L10chemical ordering. …


Tunable Impedance Matching Network Fundamental Limits And Pracitical Considerations, Wesley N. Allen Oct 2014

Tunable Impedance Matching Network Fundamental Limits And Pracitical Considerations, Wesley N. Allen

Open Access Dissertations

As wireless devices continue to increase in utility while decreasing in dimension, design of the RF front-end becomes more complex. It is common for a single handheld device to operate on a plethora of frequency bands, utilize multiple antennae, and be subjected to a variety of environments. One complexity in particular which arises from these factors is that of impedance mismatch. Recently, tunable impedance matching networks have begun to be implemented to address this problem. ^ This dissertation presents the first in-depth study on the frequency tuning range of tunable impedance matching networks. Both the fundamental limitations of ideal networks …


Particle Swarms In Confining Geometries, Eric Robert Boomsma Oct 2014

Particle Swarms In Confining Geometries, Eric Robert Boomsma

Open Access Dissertations

The transport of micro- and nano-particles in subsurface fluid deposits is an area of increasing interest due to the rising use of these particles for consumer and industrial purposes. Subsurface particle transport is complicated by the presence of fractures and fracture networks which govern the paths that particles will be able to take. In this thesis, subsurface particle transport will be investigated using particle swarms; collections of hydro-dynamically interacting particles which exhibit group behavior. The effects of fluid viscosity, particle properties, fracture geometry, and fracture aperture on swarm behavior were experimentally investigated. ^ Swarm parameters were examined in time with …


Effects Of Energetic Irradiation On Materials And Devices Based On Graphene And Topological Insulators, Isaac Childres Oct 2014

Effects Of Energetic Irradiation On Materials And Devices Based On Graphene And Topological Insulators, Isaac Childres

Open Access Dissertations

This report focuses on the optical and electronic properties of graphene and topological insulators and how these Dirac fermion systems interact with energetic irradiation. We first present data exploring the effects of electron-beam and oxygen plasma induced disorder on the electronic properties and Raman spectra of graphene. These initial investigations were important for relating Raman peak intensities and weak localization features to each other and to an average disorder length in graphene, LD. ^ We then integrate gate-effect measurements into the Raman spectroscopy study to fully explore the relationships between carrier density, disorder and Raman spectrum signatures. We …


Transport Studies Of Reentrant Integer Quantum Hall States Forming In The Two-Dimensional Electron Gas, Nianpei Deng Oct 2014

Transport Studies Of Reentrant Integer Quantum Hall States Forming In The Two-Dimensional Electron Gas, Nianpei Deng

Open Access Dissertations

The two dimensional electron gas subjected to a magnetic field has been a model system in contemporary condensed matter physics which generated many beautiful experiments as well as novel fundamental concepts. These novel concepts are of broad interests and have benefited other fields of research. For example, the observations of conventional odd-denominator fractional quantum Hall states have enriched many-body physics with important concepts such as fractional statistics and composite fermions. The subsequent discovery of the enigmatic even-denominator ν=5/2 fractional quantum Hall state has led to more interesting concepts such as non-Abelian statistics and pairing of composite fermions which can be …


Efficient And Coherent Frequency Conversions And Nonlinear Interference In Optical Parametric And Atomic Raman Processes, Yu Ding Oct 2014

Efficient And Coherent Frequency Conversions And Nonlinear Interference In Optical Parametric And Atomic Raman Processes, Yu Ding

Open Access Dissertations

By implementing a parametric down-conversion process with a strong signal field injection, we demonstrate that frequency down-conversion from pump photons to idler photons can be a coherent process. Contrary to a common misconception, we show that the process can be free of quantum noise. With an interference experiment, we demonstrate that coherence is preserved in the conversion process. This technique could lead to a high-fidelity quantum state transfer from a high-frequency photon to a low-frequency photon and connect a missing link in quantum networks. ^ Coherent and efficient nonlinear interaction and frequency conversion are of great interest in many areas …


Dynamic Control Of Plasmonic Resonances With Graphene Based Nanostructures, Naresh Kumar Emani Oct 2014

Dynamic Control Of Plasmonic Resonances With Graphene Based Nanostructures, Naresh Kumar Emani

Open Access Dissertations

Light incident on a metallic structure excites collective oscillations of electrons termed as plasmons. These plasmons are useful in control and manipulation of information in nanoscale dimensions and at high operating frequencies. Hence, the field of plasmonics opens up the possibility of developing nanoscale optoelectronic circuitry for computing and sensing applications. One of the challenges in this effort is the lack of tunable plasmonic resonance. Currently, the resonant wavelength of plasmonic structure is fixed by the material and structural parameters. Post-fabrication dynamic control of a plasmonic resonance is rather limited.^ In this thesis we explore the combination of optoelectrical properties …


Quantum Mechanics In Complex Systems, Ross Douglas Hoehn Oct 2014

Quantum Mechanics In Complex Systems, Ross Douglas Hoehn

Open Access Dissertations

This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein …


Observation Of Upsilon Suppression, Search For Long-Lived Particles, And Observation Of B0s → Micro + Micro-- At The Lhc With The Cms Experiment, Zhen Hu Oct 2014

Observation Of Upsilon Suppression, Search For Long-Lived Particles, And Observation Of B0s → Micro + Micro-- At The Lhc With The Cms Experiment, Zhen Hu

Open Access Dissertations

The LHC centre-of-mass energy allows abundant ϒ production in lead-lead (PbPb) collisions. A detailed measurement of the bottomonium production will help to characterize the dense matter produced in heavy-ion collisions. The full spectroscopy of quarkonium states has been proposed as a possible thermometer for the QGP. The measurement reported in Chapter 3 is performed with data recorded by CMS during the first PbPb run at 2010 and the proton-proton (pp) run at 2011, both at sqrt sNN = 2.76 TeV. The integrated luminosity corresponds to 7.28/µb for PbPb and 225/nb for ppcollisions. Using muons of transverse momentum ( …


Beam-Induced Radiation Heating On The Superconducting Undulator At The Advanced Photon Source, Laura Elizabeth Boon Oct 2014

Beam-Induced Radiation Heating On The Superconducting Undulator At The Advanced Photon Source, Laura Elizabeth Boon

Open Access Dissertations

In January 2013 the Advanced Photon Source (APS), a 7 GeV synchrotron X-ray source, commissioned a Superconducting Undulator (SCU). The superconducting magnet is thermally isolated from the beam vacuum chamber, which absorbs the beam-induced heating. Previous beam induced heat load studies at other laboratories had not included a robust calculation of radiation heating from the upstream dipole magnet. The mitigation of the radiation heating mechanism, and production of photoelectrons to seed an electron cloud was studied for this thesis. ^ An analytical model was developed to predict the radiation heat load on the SCU chamber. This model was benchmarked with …


Applications Of Femtosecond Coherent Anti-Stokes Raman Scattering In Combustion, Claresta Nicole Dennis Oct 2014

Applications Of Femtosecond Coherent Anti-Stokes Raman Scattering In Combustion, Claresta Nicole Dennis

Open Access Dissertations

The dissertation deals with the further development of chirped-probe-pulse femtosecond coherent anti-Stokes Raman spectroscopy (CPP fs-CARS) for applications of gas phase thermometry and extension to methane concentration measurements. The main effort has been to assess the usefulness and robustness of the technique in turbulent combustors of practical interest. A primary aim has been to evaluate the use of CPP fs-CARS for vibrational N2 thermometry in a highly turbulent environment. It has been suggested that due to the laser beam temporal overlap required for fs-CARS signal generation, the technique would be unsuccessful due to beam propagation retardation effects from density …


Theory Of Density Functionals, Martin A. Mosquera-Tabares Oct 2014

Theory Of Density Functionals, Martin A. Mosquera-Tabares

Open Access Dissertations

Density functional theory is an alternative quantum mechanical theory that offers simple ways of performing calculations of the electronic properties of matter. Many different methods derive from density functional theory. The most appealing for its simplicity and rigor is the theory of Kohn and Sham. In this thesis I propose new methods in density-functional theory that are helpful to address some important problems in the application of the local-density approximation within Kohn-Sham DFT to the analysis of ground-states and dynamical properties of electronic systems.


Evaluation Of Yttrium-90 Positron Emission Tomography Dosimetry, Katherine N. Tapp Oct 2014

Evaluation Of Yttrium-90 Positron Emission Tomography Dosimetry, Katherine N. Tapp

Open Access Dissertations

Purpose: Radioembolization is a novel treatment which utilizes the liver's unique dual system blood supply to trap yttrium-90 (90Y) microspheres in microvasculature near liver tumors. Radioembolization dose planning and dosimetry are based on crude, inaccurate assumptions due to the lack of knowledge of patient specific 90Y microsphere distribution. In recent years, the very small 3.1867e-5 internal pair production decay branch of 90Y has been shown to allow for positron emission tomography (PET) imaging following radioembolization. This work explores the accuracy and limitation of 90Y PET imaging due to the extremely low signal to noise (SNR) …


Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta Oct 2014

Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta

Open Access Dissertations

Along with the revolutionary discovery and development of carbon nanostructures, such as carbon nanotubes and graphitic sheets, has arrived the potential for their application in the fields of medicine, bioscience and engineering due to their exceptional structural, thermal and electrical properties. As roll-to-roll plasma deposition systems begin to provide means for large scale production of these nanodevices, a detailed understanding of the environment responsible for their synthesis is imperative in order to more accurately design and control the growth of carbon nanodevices. To date, the understanding of the chemistry and kinetics that govern the synthesis of carbon nanodevices is only …


Hydrogen Loading System Development And Evaluation Of Tritiated Substrates To Optimize Performance In Tritium Based Betavoltaics, Thomas E. Adams Oct 2014

Hydrogen Loading System Development And Evaluation Of Tritiated Substrates To Optimize Performance In Tritium Based Betavoltaics, Thomas E. Adams

Open Access Dissertations

State-of-the-art hydrogen loading system onto thin metallic films based on differential pressure in calibrated chambers has been developed for conditions pressures and temperatures up to 69 bar and 500°C, respectively. Experiments on hydrogen loading on to palladium films of thickness 50 and 250 nm were conducted at pressure ranging from 0.2 bar to 10 bar at temperature 310°C. For first time film hydrogen loading was carried out at 1 bar and at room temperature which temperature. Beta flux exiting surface of metal tritide films has been modeled with MC-SET (Monte Carlo Simulation of Electron Trajectories in solids). Surface beta flux …


Energy Efficient Hybrid Computing Systems Using Spin Devices, Mrigank Sharad Jul 2014

Energy Efficient Hybrid Computing Systems Using Spin Devices, Mrigank Sharad

Open Access Dissertations

Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin …


Measurement Of A Weak Transition Moment Using Coherent Control, Dionysios Antypas Oct 2013

Measurement Of A Weak Transition Moment Using Coherent Control, Dionysios Antypas

Open Access Dissertations

We have developed a two-pathway Coherent Control technique for measurements of weak optical transition moments. We demonstrate this technique through a measurement of the transition moment of the highly-forbidden magnetic dipole transition between the 6s2S1/21/2 and 7s2S1/21/2 states in atomic Cesium. The experimental principle is based on a two-pathway excitation, using two phase-coherent laser fields, a fundamental field at 1079 nm and its second harmonic at 539.5 nm. The IR field induces a strong two-photon transition, while the 539.5 nm field drives a pair of weak one-photon transitions: a Stark-induced transition of …


Nanoscale Semiconductor Materials And Devices Employing Hybrid 1d And 2d Structures For Tunable Electronic And Photonic Applications, Suprem Ranjan Das Oct 2013

Nanoscale Semiconductor Materials And Devices Employing Hybrid 1d And 2d Structures For Tunable Electronic And Photonic Applications, Suprem Ranjan Das

Open Access Dissertations

Das, Suprem R. Ph.D., Purdue University, December 2013. Nanoscale Semiconductor Materials and Devices employing Hybrid 1D and 2D structures for Tunable Electronic and Photonic Applications. Major Professor: Dr. David B. Janes.

Continued miniaturization of microelectronic devices over past decades has brought the device feature size towards the physical limit. Likewise, enormous `waste energy' in the form of self-heating in almost all of the electronic and optoelectronic devices needs an `energy-efficient low power' and `high performance' material as well as device with alternate geometry. III-V semiconductors are proven to be one of the alternate systems of materials for various applications including …


Modeling The Atomic And Electronic Structure Of Metal-Metal, Metal-Semiconductor And Semiconductor-Oxide Interfaces, Ganesh Krishna Hegde Oct 2013

Modeling The Atomic And Electronic Structure Of Metal-Metal, Metal-Semiconductor And Semiconductor-Oxide Interfaces, Ganesh Krishna Hegde

Open Access Dissertations

The continuous downward scaling of electronic devices has renewed attention on the importance of the role of material interfaces in the functioning of key components in electronic technology in recent times. It has also brought into focus the utility of

atomistic modeling in providing insights from a materials design perspective. In this thesis, a combination of Semi Empirical Tight-Binding (TB), first-principles Density

Functional Theory and Reactive Molecular Dynamics (MD) modeling is used to study aspects of the electronic and atomic structure of three such 'canonical' material interfaces - Metal-Metal, Metal-Semiconductor and Semiconductor oxide interfaces.

An important contribution of this thesis …


Atomistic Simulation Of Plasma Interaction With Plasma Facing Components In Fusion Reactors, Xue Yang Oct 2013

Atomistic Simulation Of Plasma Interaction With Plasma Facing Components In Fusion Reactors, Xue Yang

Open Access Dissertations

The interaction between plasma and fusion relevant materials is one of the critical issues in successfully using those materials in Tokamak reactors. This research uses molecular dynamics, kinetic Monte Carlo and binary collision approximation methods to model fusion relevant material bombarded by energetic particles to investigate retention, deposition, sputtering, erosion, blistering effects, diffusion, and so on.

The deuterium bombardment of monocrystalline tungsten was modeled by LAMMPS code using Tersoff type interatomic potential. The deuterium trapping rate, implantation depth, and stopping time in 600-2000 K tungsten bombarded by 5-100 eV deuterium atoms were simulated. Irradiated monocrystalline tungsten became amorphous prior to …


Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav Oct 2013

Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav

Open Access Dissertations

Thermoelectric devices and lithium-ion batteries are among the fastest growing energy technologies. Thermoelectric devices generate energy from waste heat, whereas lithium-ion batteries store energy for use in commercial applications. Two different topics are bound with a common thread in this thesis - nanotechnology! In fact, nanostructuring is a more preferred term for the approach I have taken herein. Another commonality between these two topics is the material system I have used to prove my hypotheses - complex metal oxides.

Complex metal oxides can be used for both energy generation and storage as they are stable at high temperatures, are benign …