Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Optics

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 2379

Full-Text Articles in Physics

Adapt Laser Shaping, Quinlin Reynolds Apr 2024

Adapt Laser Shaping, Quinlin Reynolds

ATU Research Symposium

Investigation into producing a machine learning algorithm that allows a He-Ne laser to classify whether a produced beam shape is uniformly gaussian or not, in order to adaptively move the laser to consistently target the encoded interference pattern area. This will then result in continuous uniform beam shapes of the desired output.


Synthesis, Structural And Thermal Studies Of Dl-Alanine Potassium Di- Chromate Single Crystals, Sundararaj Lincy Mary Ponmani, Soundararajan Gnanakkan Pushpalatha Gracelin, Somasundaram Selvakumar, Subbaiah Chelladurai Vella Durai Mar 2024

Synthesis, Structural And Thermal Studies Of Dl-Alanine Potassium Di- Chromate Single Crystals, Sundararaj Lincy Mary Ponmani, Soundararajan Gnanakkan Pushpalatha Gracelin, Somasundaram Selvakumar, Subbaiah Chelladurai Vella Durai

Makara Journal of Science

Amino acids and their complexes are organic or semiorganic materials that have attracted considerable attention because they can be easily used in optical storage devices. DL-alanine is one of the rare amino acids that crystallizes in anoncentrosymmetric group. This article demonstrates how DL-alanine potassium dichromate (DAPC) single crystals have shown sufficient growth. DAPC crystals were analyzed by single crystal X-ray diffraction and powder X-ray diffraction. Using thermogravimetric analysis/differential thermal analysis (TGA/DTA) and differential scanning calorimetry, this work also examined the melting point, thermal stability, decomposition point, and other thermal parameters of the DAPC crystals. Results show that the decomposition point …


Investigation Of Gas Dynamics In Water And Oil-Based Muds Using Das, Dts, And Dss Measurements, Temitayo S. Adeyemi Mar 2024

Investigation Of Gas Dynamics In Water And Oil-Based Muds Using Das, Dts, And Dss Measurements, Temitayo S. Adeyemi

LSU Master's Theses

Reliable prediction of gas migration velocity, void fraction, and length of gas-affected region in water and oil-based muds is essential for effective planning, control, and optimization of drilling operations. However, there is a gap in our understanding of gas behavior and dynamics in water and oil-based muds. This is a consequence of the use of experimental systems that are not representative of field-scale conditions. This study seeks to bridge the gap via the well-scale deployment of distributed fiber-optic sensors for real-time monitoring of gas behavior and dynamics in water and oil-based mud. The aforementioned parameters were estimated in real-time using …


Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw Mar 2024

Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw

University Honors Theses

Spectroscopic end point detection is a common tool used for measuring slope changes in wavelength intensity. Using algorithms able to apply this concept, coatings will be able to be dynamically measured in real time and stopped at the appropriate level to ensure process uniformity. It is currently applied to reductive processes such as etching, where the surface will start to be eaten away, creating a plasma. When the entire amount of a material on a substrate has been eaten away, the plasma will change color as it is beginning to etch a different material. Using a spectrometer, this point where …


6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew Mar 2024

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We develop six-dimensional single-molecule orientation-localization microscopy (SMOLM) to measure the 3D positions and 3D orientations simultaneously of single fluorophores. We show how careful optimization of phase and polarization modulation components can encode phase, polarization, and angular spectrum information from each fluorescence photon into a microscope’s dipole-spread function. We used the transient binding and blinking of Nile red (NR) to characterize the helical structure of fibrils formed by designed amphipathic peptides, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. We also deployed merocyanine 540 to uncover the interfacial architectures of biomolecular condensates.


Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Maria Victoria Collados, Jesús Atencia, Suzanne Martin Feb 2024

Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Maria Victoria Collados, Jesús Atencia, Suzanne Martin

Articles

Holographic optical elements (HOEs) have the potential to enable more compact, versatile, and lightweight optical designs, but many challenges remain. Volume HOEs have the advantage of high diffraction efficiency, but they present both chromatic selectivity and chromatic dispersion, which impact their use with wide spectrum light sources. Single-color light emitting diode (LED) sources have a narrow spectrum that reduces these issues and this makes them better suited for use with volume HOEs. However, the LED source size must be taken into consideration for compact volume HOE-LED systems. To investigate the design limits for compact HOE-LED systems, a theoretical and experimental …


Two-Photon Absorption And Fluorescence Of Cadmium Sulfide, Jacob Goranson, Gregory J. Taft Feb 2024

Two-Photon Absorption And Fluorescence Of Cadmium Sulfide, Jacob Goranson, Gregory J. Taft

Physics Faculty Publications

The two-photon absorption and fluorescence of bulk cadmium sulfide were studied using 50-fs, 800-nm pulses from an unamplified Ti:sapphire laser. The fluorescence spectrum was measured to have a main peak at 522 nm, and the power of the fluorescence was shown to vary quadratically with the 800-nm beam power. This supports the theory that the fluorescence is excited by two-photon absorption and confirms previous work done with longer duration, higher energy excitation pulses. Pump-probe measurements provided additional confirmation of the two-photon absorption. Measured spectral broadening of the wings of the laser spectrum also was observed, which likely is due to …


Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton Feb 2024

Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

CdSiP2 crystals are used in optical parametric oscillators to produce tunable output in the mid-infrared. As expected, the performance of the OPOs is adversely affected by residual optical absorption from native defects that are unintentionally present in the crystals. Electron paramagnetic resonance (EPR) identifies these native defects. Singly ionized silicon vacancies (V-Si) are responsible for broad optical absorption bands peaking near 800, 1033, and 1907 nm. A fourth absorption band, peaking near 630 nm, does not involve silicon vacancies. Exposure to 1064 nm light when the temperature of the CdSiP2 crystal is near 80K converts …


Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand Feb 2024

Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand

Dissertations, Theses, and Capstone Projects

Monolayers Transition metal dichalcogenides (TMDs) have attracted much attention in recent years due to their promising optical and electronic properties for applications in optoelectronic devices. The rich multivalley band structure and sizable spin-orbit coupling in monolayer TMDs result in several optically bright and dark excitonic states with different spin and valley configurations. In the proposed works, we have developed experimental techniques and theoretical models to study the dynamics, interactions, and transport of both dark and bright excitons.

In W-based monolayers of TMDs, the momentum dark exciton cannot typically recombine optically, but they represent the lowest excitonic state of the system …


Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond Jan 2024

Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond

Physics Publications

Kerr instability can be exploited to amplify visible, near-infrared, and midinfrared ultrashort pulses. We use the results of Kerr instability amplification theory to inform our simulations amplifying few-cycle pulses. We show that the amplification angle dependence is simplified to the phase-matching condition of four-wave mixing when the intense pump is considered. Seeding with few-cycle pulses near the pump leads to broadband amplification without spatial chirp, while longer pulses undergo compression through amplification. Pumping in the midinfrared leads to multioctave spanning amplified pulses with single-cycle duration not previously predicted. We discuss limitations of the amplification process and optimizing pump and seed …


Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner Jan 2024

Applications Of Independent And Identically Distributed (Iid) Random Processes In Polarimetry And Climatology, Dan Kestner

Dissertations, Master's Theses and Master's Reports

The unifying theme of this thesis is the characterization of “perfect randomness,” i.e., independent and identically distributed (IID) stochastic processes as these are applied in physical science. Two specific and mathematically distinct applications are chosen: (i) Radar and optical polarimetry; (ii) Analysis of time series in meteorology. In (i), IID process of a special kind, namely, with a distribution defined by symmetry, is used to link its multivariate Gaussian density to uniformity on the Poincaré sphere. This “statistical ellipsometry” approach is then used to relate polarimetric mismatches or imbalances to ellipsometric variables and suitably chosen cross-correlation measures. In (ii), recently …


Volumetric Imaging Using The Pupil-Matched Remote Focusing Technique In Light-Sheet Microscopy, Sayed Hassan Dibaji Foroushani Dec 2023

Volumetric Imaging Using The Pupil-Matched Remote Focusing Technique In Light-Sheet Microscopy, Sayed Hassan Dibaji Foroushani

Optical Science and Engineering ETDs

ABSTRACT

The dissertation explores innovative techniques in light sheet microscopy, a pivotal tool in biomedical imaging, to enhance its speed, resolution, and efficiency in capturing dynamic biological processes. Light sheet microscopy allows for quick 3D imaging of biological specimens ranging from cells to organs with high spatiotemporal resolution, large field-of-view, and minimal damage, making it vital for in vivo imaging.

The first project introduces a novel optical concept designed to optimize Axially Swept Light Sheet Microscopy (ASLM). This technique is crucial for imaging specimens ranging from live cells to chemically cleared organs due to its versatility across different immersion media. …


Development Of An Optical Test Bed For The Fabrication And Characterisation Of An Analog Holographic Wavefront Sensor, Emma Branigan, Andreas Zepp, Suzanne Martin, Matthew Sheehan, Szymon Gladysz, Kevin Murphy Dec 2023

Development Of An Optical Test Bed For The Fabrication And Characterisation Of An Analog Holographic Wavefront Sensor, Emma Branigan, Andreas Zepp, Suzanne Martin, Matthew Sheehan, Szymon Gladysz, Kevin Murphy

Conference Papers

A new holographic recording setup has been developed for the fabrication of single- and multi-mode photopolymer-based analog holographic wavefront sensors. A second setup has been built and used to characterise the sensor at several wavelengths.


Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost Dec 2023

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin Dec 2023

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin

All Theses

Optically stimulated luminescence (OSL) dosimetry was utilized to calibrate Al2O3:C powder dosimeters, available commercially as the nanoDot® from Landauer Inc., and compare the dosimeter response to radium-226 (226Ra) and cesium-137 (137Cs). The signal from the OSL was quantified using a microSTARii® OSL reader also produced by Landauer Inc. Dose-response curves were developed for 226Ra and 137Cs experiments (5 dosimeters each) at thirteen absorbed doses. Individual dosimeter response was tracked by serial number. Linear regression analysis was performed to determine if there were significant differences between the intercepts of the …


Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán Nov 2023

Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acoustic levitation has become a crucial technique for contactless manipulation in several fields, particularly in biological applications. However, its application in the photonics field remains largely unexplored. In this study, we implement an affordable and innovative phased-array levitator that enables stable trapping in the air of micrometer dye-doped droplets, thereby enabling the creation of microlasers. For the first time, this paper presents a detailed performance of the levitated microlaser cavity, supported by theoretical analysis concerning the hybrid technology based on the combination of whispering-gallery modes and acoustic fields. The pressure field distribution inside the acoustic cavity is numerically solved and …


System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers Nov 2023

System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers

Faculty Publications

We provide an in-depth analysis of noise considerations in coherent imaging, accounting for speckle and scintillation in addition to “conventional” image noise. Specifically, we formulate closed-form expressions for total effective noise in the presence of speckle only, scintillation only, and speckle combined with scintillation. We find analytically that photon shot noise is uncorrelated with both speckle and weak-to-moderate scintillation, despite their shared dependence on the mean signal. Furthermore, unmitigated speckle and scintillation noise tends to dominate coherent-imaging performance due to a squared mean-signal dependence. Strong coupling occurs between speckle and scintillation when both are present, and we characterize this behavior …


Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui Nov 2023

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui

Electronic Theses and Dissertations

Multidimensional coherent spectroscopy (MDCS) is a quickly growing field that has a lot of advantages over more conventional forms of spectroscopy. These advantages all come from the fact that MDCS allows us to get time resolved correlated emission and absorption spectra using very precisely chosen interactions between the density matrix and the excitation laser. MDCS spectra gives the researcher a lot of information that can be extracted purely through qualitative analysis. This is possible because state couplings are entirely separated on the spectra, and once we know how to read the data, we can see how carriers transport in the …


Active-Illumination Extension To The Priest And Meier Pbrdf, Mark F. Spencer, Milo W. Hyde Iv, Santasri R. Bose-Pillai, Michael A. Marciniak Oct 2023

Active-Illumination Extension To The Priest And Meier Pbrdf, Mark F. Spencer, Milo W. Hyde Iv, Santasri R. Bose-Pillai, Michael A. Marciniak

Faculty Publications

This paper develops a 3D vector solution for the scattering of partially coherent laser-beam illumination from statistically rough surfaces. Such a solution enables a rigorous comparison to the well-known Priest and Meier polarimetric bidirectional reflectance distribution function (pBRDF) [Opt Eng 41(5),988 (2002).]. Overall, the comparison shows excellent agreement for the normalized spectral density and the degree of polarization. Based on this agreement, the 3D vector solution also enables an extension to the Priest and Meier pBRDF that accounts for the effects of active illumination. In particular, the 3D vector solution enables the development of a closed-form expression for the spectral …


Optics Studies For Multipass Energy Recovery At Cebaf: Er@Cebaf, Isurumali Neththikumara Oct 2023

Optics Studies For Multipass Energy Recovery At Cebaf: Er@Cebaf, Isurumali Neththikumara

Physics Theses & Dissertations

Energy recovery linacs (ERLs), focus on recycling the kinetic energy of electron beam for the purpose of accelerating a newly injected beam within the same accelerating structure. The rising developments in the super conducting radio frequency technology, ERL technology has achieved several noteworthy milestones over the past few decades. In year 2003, Jefferson Lab has successfully demonstrated a single pass energy recovery at the CEBAF accelerator. Furthermore, they conducted successful experiments with IR-FEL demo and upgrades, as well as the UV FEL driver. This multi-pass, multi-GeV range energy recovery demonstration proposed to be carried out at CEBAF accelerator at Jefferson …


Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh Sep 2023

Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh

Dissertations, Theses, and Capstone Projects

Strong light-matter coupling in solid state systems is an intriguing process that allows one to exploit the advantages of both light and matter. In this context, microcavities have become essential platforms for studying the strong coupling regime, where hybrid light-matter states known as exciton-polaritons form, leading to enhanced light matter interaction, modified material properties, and novel quantum phenomena. In this thesis, we explore the phenomenology of exciton-polaritons in strained TMD microcavities, 2D perovskites, fluorescent proteins and organic dyes encompassing thermalization, polariton lasing, and the observation of nonlinear effects.

Transition metal dichalcogenides (TMDs) have emerged as a remarkable class of two- …


Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge Sep 2023

Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge

Dissertations, Theses, and Capstone Projects

Individual quantum systems in semiconductors are currently the most sought-after platform for applications in quantum science. Most notably, the nitrogen-vacancy (NV) center in diamond features a defect deep within the electronic bandgap, making it amenable for precise manipulation to help pave the way to perform fundamental quantum physics experimentation. The NV center also offers long coherence times and versatile spin-dependent fluorescent properties, making it an ideal candidate for a nanoscale magnetometer. Furthermore, multi-color excitation offers deterministic charge state manipulation. While ambient operation has been key to their appeal, bringing NVs to cryogenic conditions opens new opportunities for alternate forms of …


Tunable Linear And Nonlinear Metasurfaces Based On Hybrid Gold-Graphene Plasmons, Matthew Feinstein Sep 2023

Tunable Linear And Nonlinear Metasurfaces Based On Hybrid Gold-Graphene Plasmons, Matthew Feinstein

Dissertations, Theses, and Capstone Projects

Optical Metasurfaces are planar structures that are patterned with subwavelength structures and are very thin compared to the wavelength of light. Despite their thinness, these structured materials can strongly interact with incident light to effect the functionalities of conventional optical components, such as rotation of the polarization state, beam steering, lensing, spectral filtering, and holography, to name a few. Metasurfaces can also facilitate nonlinear optical effects, such as the mixing of beams at different frequencies to generate a beam at a new frequency.

The ability to alter the behavior of a metasurface during operation is highly desired for applications such …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva Aug 2023

The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva

Theses & Dissertations

Visual acuity (VA) is universally accepted as the gold standard metric for ocular vision and function. Contrast sensitivity (CS), color vision, and electrophysiological testing for clinical and occupational settings are warranted despite being deemed ancillary and minimally utilized by clinicians. These assessments provide essential information to subjectively and objectively quantify and obtain optimal functional vision. They are useful for baseline data and monitoring hereditary and progressive ocular conditions and cognitive function. The studies in this dissertation highlight the value of contrast sensitivity, color vision, and cone specific electrophysiological testing, as well as the novel metrics obtained with potential practical clinical …


Design Of A Resonant Optical Cavity For Imaging Magneto-Optically Active Thin Film Samples, Cody Robert Brelage Aug 2023

Design Of A Resonant Optical Cavity For Imaging Magneto-Optically Active Thin Film Samples, Cody Robert Brelage

Graduate Theses - Physics and Optical Engineering

This document describes the design and fabrication of an optical resonator system to investigate magneto-optic properties of thin film samples. This system uses an open-air optical resonator to enable photons to make multiple passes through each thin film and thus increase the magnitude of the Faraday rotation that each sample imposes onto the light that exits the system. This system promises many future experiments to study the magneto-optic properties of thin film and nano-particle samples. Using an optical resonator to enhance Faraday rotation should enable an improved signal-to-noise ratio in taking measurements and images with a photodetector.


Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert Aug 2023

Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

This dissertation explores the development and application of diamond color centers, specifically the silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers, in super-resolution microscopy and magnetic imaging techniques. It demonstrates the potential of SiV centers as photostable fluorophores in stimulated emission depletion (STED) microscopy, with a resolution of approximately 90 nm. The research also presents a method for nanoscale magnetic microscopy using NV centers by combining charge state depletion (CSD) microscopy with optically detected magnetic resonance (ODMR) to image magnetic fields produced by 30 nm iron-oxide nanoparticles. The individual magnetic feature width reaches ~100 nm while resolving magnetic field patterns from nanoparticles …


Hybridly Integrated Semiconductor Lasers And Amplifiers On Iii-V/Si3n4 Platform For Beam Combining And Other Advanced Applications, Siwei Zeng Aug 2023

Hybridly Integrated Semiconductor Lasers And Amplifiers On Iii-V/Si3n4 Platform For Beam Combining And Other Advanced Applications, Siwei Zeng

All Dissertations

Photonic integrated circuits (PICs) are devices that integrate multiple photonic functions on a small chip and allow for accurate dimension control and massive production. Similar to electronic integrated circuits, PICs can significantly reduce the system cost, size, weight, and operation power (CSWaP). Recently, the PIC technology has transformed many optical technologies which traditionally rely on tabletop systems and bulky components, such as optical interconnects, nonlinear optics, and quantum photonics, into a chip-scale platform. This device and system miniaturization has successfully led to a wide range of practical applications in computing, sensing, spectroscopy, and communication. However, the traditional passive PIC platform …


Fem Simulations Of Plasmon Field Enhancement In Gold Nanoparticle Dimers And Gold Nanoparticle-Nanorod Dimers, Edward J. Lipchus Aug 2023

Fem Simulations Of Plasmon Field Enhancement In Gold Nanoparticle Dimers And Gold Nanoparticle-Nanorod Dimers, Edward J. Lipchus

Graduate Masters Theses

Plasmon resonance refers to the collective oscillation of free electrons in a nanomaterial in response to an incident electromagnetic field. When two plasmonic nanoparticles are placed close together, their localized surface plasmon resonances can couple and interact. The resulting plasmonic coupling leads to the formation of new plasmonic modes in the dimer system, significantly enhancing the electromagnetic fields in the vicinity of the nanoparticles, with various interesting and potentially useful applications. This thesis investigates the optical field enhancement arising from gold nanoparticle dimers in an aqueous dielectric medium, using the Finite Element Method simulation software COMSOL Multiphysics. The simulations provide …


High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper Aug 2023

High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper

Optical Science and Engineering ETDs

Experimental observation of optical refrigeration using ytterbium doped silica glass in recent years has created a new solution for heat mitigation in high-power laser systems, nonlinear fiber experiments, integrated photonics, and precision metrology. Current efforts of different groups focus on compositional optimization, fiber fabrication, and investigating how much silica can be cooled with a laser. At the start of this work, the best effort in laser cooling ytterbium doped silica saw cooling by 6 K from room temperature. This dissertation follows the experimental efforts that culminated in the increase of this initial record by one order of magnitude. Comprehensive spectroscopic …