Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 393

Full-Text Articles in Physics

Quantics Tensor Trains: The Study Of A Continuous Lattice Model And Beyond, Aleix Bou Comas Jun 2024

Quantics Tensor Trains: The Study Of A Continuous Lattice Model And Beyond, Aleix Bou Comas

Dissertations, Theses, and Capstone Projects

This four-chapter dissertation studies the efficient discretization of continuous variable functions with tensor train representation. The first chapter describes all the methodology used to discretize functions and store them efficiently. In this section, the algorithm tensor renormalization group is explained for self-containment purposes. The second chapter centers around the XY model. Quantics tensor trains are used to describe the transfer matrix of the model and compute one and two-dimensional quantities. The one dimensional magnitudes are compared to analytical results with an agreement close to machine precision. As for two dimensions, the analytical results cannot be computed. However, the critical temperature …


A Thesis, Or Digressions On Sculptural Practice: In Which, Concepts & Influences Thereof Are Explained, Set Forth, Catalogued, Or Divulged By Way Of Commentaries To A Poem, First Conceived By The Artist, Fed Through Chatg.P.T., And Re-Edited By The Artist, To Which Are Added, Annotated References, Impressions And Ruminations Thereof, Also Including Private Thoughts & Personal Accounts Of The Artist, Jaimie An Jun 2024

A Thesis, Or Digressions On Sculptural Practice: In Which, Concepts & Influences Thereof Are Explained, Set Forth, Catalogued, Or Divulged By Way Of Commentaries To A Poem, First Conceived By The Artist, Fed Through Chatg.P.T., And Re-Edited By The Artist, To Which Are Added, Annotated References, Impressions And Ruminations Thereof, Also Including Private Thoughts & Personal Accounts Of The Artist, Jaimie An

Masters Theses

This thesis is an exercise in, perhaps a futile, attempt to trace just some of the ideas, stories, and musings I might meander through in my process. It’s not quite a map, nor is it a neat catalogue; it is a haphazard collection of tickets and receipts from a travel abroad, carelessly tossed in a carry-on, only to be stashed upon returning home. These ideas are derived from much greater thinkers and authors than myself; I am a mere collector or a translator, if that, and not a very good one, for much is lost. I do not claim comprehensive …


Improving The Scalability Of Neural Network Surface Code Decoders, Kevin Wu May 2024

Improving The Scalability Of Neural Network Surface Code Decoders, Kevin Wu

Undergraduate Honors Theses

Quantum computers have recently gained significant recognition due to their ability to solve problems intractable to classical computers. However, due to difficulties in building actual quantum computers, they have large error rates. Thus, advancements in quantum error correction are urgently needed to improve both their reliability and scalability. Here, we first present a type of topological quantum error correction code called the surface code, and we discuss recent developments and challenges of creating neural network decoders for surface codes. In particular, the amount of training data needed to reach the performance of algorithmic decoders grows exponentially with the size of …


The Black-To-White Hole Transition, Farshid Soltani Apr 2024

The Black-To-White Hole Transition, Farshid Soltani

Electronic Thesis and Dissertation Repository

Classically, an isolated black hole is a stable gravitational object. If however semiclassical effects are taken into account, an isolated black hole can be shown to slowly radiate its mass away in a process called evaporation. At the end of the evaporation process, when the size of the horizon becomes Planckian, the quantum nature of the gravitational field can no longer be neglected and the dynamics of the horizon is governed by quantum gravity. The main objective of this thesis is the systematic investigation of a tentative scenario for the “end of the life” of a black hole: the black-to-white …


Longitudinal Solid Polarized Target For Clas12 And Study Of Spin Structure Of Nucleons, Pushpa Pandey Apr 2024

Longitudinal Solid Polarized Target For Clas12 And Study Of Spin Structure Of Nucleons, Pushpa Pandey

Physics Theses & Dissertations

A suite of experiments measuring target-spin observables in electron-nucleon scattering (dubbed Run Group C) was conducted at Jefferson Lab’s Hall B in Newport News, VA with a new polarized nuclear target known as ‘APOLLO’ (Ammonia Polarized Longitudinally). This innovative target is engineered to seamlessly integrate with the advanced 12 GeV CEBAF (Continuous Electron Beam Accelerator Facility) accelerator and the Hall B CLAS12 (12 GeV CEBAF Large Acceptance Spectrometer) detector array. The ‘APOLLO’ target harnesses the power of Dynamic Nuclear Polarization (DNP) to achieve longitudinal polarization of solid ammonia, thereby creating a net polarization in both protons (NH3) and …


Quantum Chaos, Integrability, And Hydrodynamics In Nonequilibrium Quantum Matter, Javier Lopez Piqueres Mar 2024

Quantum Chaos, Integrability, And Hydrodynamics In Nonequilibrium Quantum Matter, Javier Lopez Piqueres

Doctoral Dissertations

It is well-known that the Hilbert space of a quantum many-body system grows exponentially with the number of particles in the system. Drive the system out of equilibrium so that the degrees of freedom are now dynamic and the result is an extremely complicated problem. With that comes a vast landscape of new physics, which we are just recently starting to explore. In this proposal, we study the dynam- ics of two paradigmatic classes of quantum many-body systems: quantum chaotic and integrable systems. We leverage certain tools commonly employed in equilibrium many-body physics, as well as others tailored to the …


Non-Relativistic Limit Of Selected Terms From The Sme Dirac Lagrangian, Quinn Reece Mar 2024

Non-Relativistic Limit Of Selected Terms From The Sme Dirac Lagrangian, Quinn Reece

Physics

We examine a selection of individual CPT/Lorentz violating terms present in the relativistic lagrangian for a free spin- 1 2 Dirac fermion of mass m in the Standard Model Extension. Euler-Lagrange relations will be applied to give Dirac-like equations including these terms and a novel procedure will be used to generate non-relativistic limits of these equations which are Schr¨odinger-Pauli-like equations. These equations will be analyzed using classical quantum mechanics toy problems to gain physical intuition for the effects of the CPT violating terms, and the results will be discussed. We will conclude with discussion on future work will include the …


Probing Central Spin Decoherence Dynamics Of Electronic Point Defects In Diamond And Silicon, Ethan Que Williams Feb 2024

Probing Central Spin Decoherence Dynamics Of Electronic Point Defects In Diamond And Silicon, Ethan Que Williams

Dartmouth College Ph.D Dissertations

Electron spins of point defects in diamond and silicon can exhibit long coherence times, making them attractive platforms for the physical implementation of qubits for quantum sensing and quantum computing. To realize these technologies, it is essential to understand the mechanisms that limit their coherence. Decoherence of these systems is well described by the central spin model, wherein the central electron spin weakly interacts with numerous electron and nuclear spins in its environment. The dynamics of the resultant dephasing can be probed with pulse electron paramagnetic resonance (pEPR) experiments.

Using a 2.5 GHz pEPR spectrometer built in-house, we performed multi-pulse …


Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand Feb 2024

Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand

Dissertations, Theses, and Capstone Projects

Monolayers Transition metal dichalcogenides (TMDs) have attracted much attention in recent years due to their promising optical and electronic properties for applications in optoelectronic devices. The rich multivalley band structure and sizable spin-orbit coupling in monolayer TMDs result in several optically bright and dark excitonic states with different spin and valley configurations. In the proposed works, we have developed experimental techniques and theoretical models to study the dynamics, interactions, and transport of both dark and bright excitons.

In W-based monolayers of TMDs, the momentum dark exciton cannot typically recombine optically, but they represent the lowest excitonic state of the system …


Solutions To The Kaluza-Klein Field Equations, Abel Eshete Jan 2024

Solutions To The Kaluza-Klein Field Equations, Abel Eshete

All Graduate Theses, Dissertations, and Other Capstone Projects

This Alternate Paper Plan explores Kaluza-Klein theory, a multidimensional framework designed to unify Einstein’s gravitational field theory and Maxwell’s electromagnetic field theory. The objectives of this research can be summarized in two key areas: The first objective is to present a comprehensive introduction to the compactified Kaluza-Klein theory. The second aim involves the application of differential geometry, specifically E ́lie Cartan’s tetrad formalism, to derive exact solutions in two distinct scenarios: a. A Levi-Civita spacetime, b. A general spherical system. Furthermore, Lagrangian and Hamiltonian formalism are utilized to define stability conditions and describe gravitational lensing and Precession of Perihelion within …


Existence Of Well-Defined Pointer Observable Selects Tensor Product Factorizations Of Quantum Systems, Brian Lee Jan 2024

Existence Of Well-Defined Pointer Observable Selects Tensor Product Factorizations Of Quantum Systems, Brian Lee

CMC Senior Theses

In the decoherence account of quantum mechanics, a choice of particular tensor product structure (a particular partition of system into subsystems) is assumed. We explore whether it is possible to relax this arbitrary choice by requiring that a valid tensor product structure admits a quasi-classical description. Such tensor product structures are said to be quasi-classical or decoherence-selected tensor product structures. This project generalizes a 2-qubit quasi-classical tensor product structure selection algorithm to an n-qubit selection algorithm, which allows us to, for the first time, consider the relationship between decoherence-selected tensor product structures and locality-selected tensor product structures. To generalize the …


Economic Entanglement: The Quantum Race Between The United States And China, Isabella Willhite Jan 2024

Economic Entanglement: The Quantum Race Between The United States And China, Isabella Willhite

Regis University Student Publications (comprehensive collection)

The United States and China are both currently home to the strongest economies and militaries in the world. Despite their interdependence, trade wars have escalated between the two countries in the past few years. While past trade wars have been focused on purely economic protectionism or ideological stances, the trade wars of today signify a shift towards protecting critical emerging technologies. The important emerging technology of today is quantum computing, which will forever change the way that computers encrypt, process, and decode information. The United States and China are on the eve of the “quantum race,” in which they will …


Higher-Derivative Quantum Field Theory And Its Implications For Hawking Radiation And Nonlocality, Gordon Kanan Jan 2024

Higher-Derivative Quantum Field Theory And Its Implications For Hawking Radiation And Nonlocality, Gordon Kanan

Physics Dissertations

One of the fundamental equations of quantum field theory is the Klein-Gordon equation which can be constructed using irreducible representations of the Poincar ́e group and describes the dynamics of spin-0 matter. The higher derivative Klein- Gordon equations are also constructed using irreducible representations of the Poincar ́e group and are, thus, invariant under operations of this group. These higher derivative Klein-Gordon equations can be placed into two series depending on the power of the derivative, one for odd powers of the derivative and one for even powers, whose solu- tions yield timelike and spacelike fields. Applying these higher derivative …


Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson Dec 2023

Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson

Physics & Astronomy ETDs

Our first focus is on few-hole quantum dots in germanium. We use discontinous Galerkin methods to discretize and solve the equations of a highly detailed k·p model that describes these systems, enabling a better understanding of experimental magnetospectroscopy results. We confirm the expected anisotropy of single-hole g-factors and describe mechanisms by which different orbital states have different g-factors. Building on this, we show that the g-factors in Ge holes are suciently sensitive to details of the device electrostatics that magnetospectroscopy data can be used to make a prediction of the underlying confinement potential. The second focus is on designing quantum …


High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni Dec 2023

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni

Electronic Thesis and Dissertation Repository

This Ph.D. thesis presents a compilation of the scientific papers I published over the last three years during my Ph.D. in loop quantum gravity (LQG). First, we comprehensively introduce spinfoam calculations with a practical pedagogical paper. We highlight LQG's unique features and mathematical formalism and emphasize the computational complexities associated with its calculations. The subsequent articles delve into specific aspects of employing high-performance computing (HPC) in LQG research. We discuss the results obtained by applying numerical methods to studying spinfoams' infrared divergences, or ``bubbles''. This research direction is crucial to define the continuum limit of LQG properly. We investigate the …


Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa Dec 2023

Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa

Doctoral Dissertations

In the burgeoning field of quantum machine learning, the fusion of quantum computing and machine learning methodologies has sparked immense interest, particularly with the emergence of noisy intermediate-scale quantum (NISQ) devices. These devices hold the promise of achieving quantum advantage, but they grapple with limitations like constrained qubit counts, limited connectivity, operational noise, and a restricted set of operations. These challenges necessitate a strategic and deliberate approach to crafting effective quantum machine learning algorithms.

This dissertation revolves around an exploration of these challenges, presenting innovative strategies that tailor quantum algorithms and processes to seamlessly integrate with commercial quantum platforms. A …


Electromagnetically Induced Transparency In An Ensemble Of Three-Level Lambda Systems, Sara Moezzi Sep 2023

Electromagnetically Induced Transparency In An Ensemble Of Three-Level Lambda Systems, Sara Moezzi

Electronic Theses and Dissertations

Electromagnetically induced transparency (EIT) is a technique whereby a medium otherwise opaque to radiation of a particular frequency can be made transparent at that frequency by applying radiation of an appropriate second frequency. EIT demonstrates numerous current applications, with a notable focus on its utilization within the field of quantum information. Given the absence of an established theory of EIT in atomic ensembles, my primary focus is to develop theoretical models that describe both the quantum mechanical origin of EIT as well as the effect of interatomic interactions. In this thesis, I present two theoretical models of EIT in an …


Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge Sep 2023

Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge

Dissertations, Theses, and Capstone Projects

Individual quantum systems in semiconductors are currently the most sought-after platform for applications in quantum science. Most notably, the nitrogen-vacancy (NV) center in diamond features a defect deep within the electronic bandgap, making it amenable for precise manipulation to help pave the way to perform fundamental quantum physics experimentation. The NV center also offers long coherence times and versatile spin-dependent fluorescent properties, making it an ideal candidate for a nanoscale magnetometer. Furthermore, multi-color excitation offers deterministic charge state manipulation. While ambient operation has been key to their appeal, bringing NVs to cryogenic conditions opens new opportunities for alternate forms of …


Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh Sep 2023

Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh

Dissertations, Theses, and Capstone Projects

Strong light-matter coupling in solid state systems is an intriguing process that allows one to exploit the advantages of both light and matter. In this context, microcavities have become essential platforms for studying the strong coupling regime, where hybrid light-matter states known as exciton-polaritons form, leading to enhanced light matter interaction, modified material properties, and novel quantum phenomena. In this thesis, we explore the phenomenology of exciton-polaritons in strained TMD microcavities, 2D perovskites, fluorescent proteins and organic dyes encompassing thermalization, polariton lasing, and the observation of nonlinear effects.

Transition metal dichalcogenides (TMDs) have emerged as a remarkable class of two- …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan Aug 2023

Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan

All Dissertations

In this thesis, we discuss the existence of spin and charge currents in systems with broken spin inversion symmetry proportional to the magnitude square of the driving electric and thermal fields. This outcome is predicated on symmetry considerations in the momentum space, whereby the product between the current operator and the out-of-equilibrium distribution function has to be even.

First, we derive the second-order correction to the particle distribution function $\delta f^{(2)}$ in a semi-classical approximation, considering the local change in the equilibrium distribution function caused by external fields. Our approach departs significantly from the previous theory where $\delta f^{(2)}$ is …


Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert Aug 2023

Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

This dissertation explores the development and application of diamond color centers, specifically the silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers, in super-resolution microscopy and magnetic imaging techniques. It demonstrates the potential of SiV centers as photostable fluorophores in stimulated emission depletion (STED) microscopy, with a resolution of approximately 90 nm. The research also presents a method for nanoscale magnetic microscopy using NV centers by combining charge state depletion (CSD) microscopy with optically detected magnetic resonance (ODMR) to image magnetic fields produced by 30 nm iron-oxide nanoparticles. The individual magnetic feature width reaches ~100 nm while resolving magnetic field patterns from nanoparticles …


Photon Counting Statistics Of Classical And Quantum Light Sources, Luis Felipe Morales Bultron Aug 2023

Photon Counting Statistics Of Classical And Quantum Light Sources, Luis Felipe Morales Bultron

Graduate Theses and Dissertations

Multiple sources of light, including coherent light, thermal light, light from a degenerate parametric oscillation and resonance fluorescence from a two level coherently driven atom are considered for the analysis of their wait time statistics. We include the second order normalized correlation function and Mandel's Q parameter for brief discussion. A general framework to analyze the generalized conditional and unconditional wait time distributions is also obtained in order to understand the photo-count statistics of the light sources included in this work. Average and variance of wait times with respect to both unconditional and conditional wait time distribution are also obtained …


Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes, Dimitrios Kranas Jul 2023

Entanglement In The Hawking Effect: From Astrophysical To Optical Black Holes, Dimitrios Kranas

LSU Doctoral Dissertations

The Hawking effect is an exciting physical prediction lying at the intersection of the two most successful theories of the past century, namely, Einstein’s theory of relativity and quantum mechanics. In this dissertation, we put special emphasis on the quantum aspects of the Hawking process encoded in the entanglement shared by the emitted fluxes of created quanta. In particular, we employ sharp tools from quantum information theory to quantify the entanglement produced by the Hawking effect throughout the black hole evaporation process. Our framework allows us to extend previous calculations of entanglement to a larger set of cases, for instance, …


Adaptive Quantum Information Processing In Non-Equilibrium Environments, Arshag Danageozian Jun 2023

Adaptive Quantum Information Processing In Non-Equilibrium Environments, Arshag Danageozian

LSU Doctoral Dissertations

Solid state and condensed matter systems, such as diamond impurities, superconductors, quantum dots, and ion traps, constitute important physical platforms for various applications in quantum information processing (QIP). However, it has consistently been shown that all such modern platforms suffer from non-equilibrium behavior on timescales that are relevant for many important QIP tasks. The causes range from intrinsic non-equilibrium dynamics (e.g. in diamond) to the presence of various impurities with their own internal dynamics (e.g. in superconductors and quantum dots) or variations in the control fields used to stabilize the quantum matter (e.g. in ion traps). When reserving degrees of …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn May 2023

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Rigorous Analysis Of Markov Processes With Applications To Quantum Information, Samuel Edwin Slezak May 2023

Rigorous Analysis Of Markov Processes With Applications To Quantum Information, Samuel Edwin Slezak

Physics & Astronomy ETDs

We present a rigorous analysis of the rapid convergence of techniques based on Markov chains for the simulation of thermal quantum systems. We show that a classical computing algorithm called path integral Monte Carlo is capable of simulating thermal states of transverse field Ising models above a threshold temperature by demonstrating the existence of a rapidly mixing Markov chain. We then turn to quantum computing algorithms and show that an idealized version of quantum Metropolis sampling can efficiently simulate systems that satisfy the eigenstate thermalization hypothesis. In a related result, we find a class of stoquastic frustration free Hamiltonians that …


Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0, Emanuel Casiano-Diaz May 2023

Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0, Emanuel Casiano-Diaz

Doctoral Dissertations

Path-Integral Monte Carlo Worm Algorithm is one of many Quantum Monte Carlo (QMC) methods that serve as powerful tools for the simulation of quantum many-body systems. Developed in the late 90’s, this algorithm has been used with great success to study a wide array of physical models where exact calculation of observables is not possible due to the exponential size of the Hilbert space. One type of systems that have eluded PIMC-WA implementation are lattice models at zero temperature, which are of relevance in experimental settings, such as in optical lattices of ultra-cold atoms. In this thesis, we develop a …


Representations Of Time In Time-Based Media: An Exploration Of The Human Experience Of Temporality In Film And Tv, Nelea Fong May 2023

Representations Of Time In Time-Based Media: An Exploration Of The Human Experience Of Temporality In Film And Tv, Nelea Fong

Honors Thesis

Time is an aspect of the human experience that fascinates us but eludes our understanding. Humans have turned to science, philosophy, and theology in our endeavor to understand time, but our shared love and history of storytelling drives us to explore temporality through visual medias that have a structural foundation in time. Expanding our understanding of the human experience of time through time-based media such as movies and TV can point us toward comprehending various forms of time and how each person can perceive said time differently. Using film and TV theory, informed by scientific and philosophical explorations in the …


Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism, Luke Mrini May 2023

Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism, Luke Mrini

Undergraduate Honors Theses

The Schwinger-Keldysh formalism for non-equilibrium field theory provides valuable tools for studying the black hole information loss paradox. In particular, there exists a Noether-like procedure to obtain the entropy density of a system by a discrete Kubo-Martin-Schwinger (KMS) variation of the action. Here, this Noether-like procedure is applied to the boundary action of an asymptotically anti-de Sitter (aAdS) black hole spacetime in maximally extended Kruskal coordinates. The result is the Kubo formula for shear viscosity, which is known in theories with an Einstein gravity dual to have a universal, constant ratio with the entropy density and is proportional to the …