Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Emission Spectroscopy Of Ingaas Quantum Dots Via High-Resolution Fabry-Perot Interferometer, Raju Bhai Kc Jan 2023

Emission Spectroscopy Of Ingaas Quantum Dots Via High-Resolution Fabry-Perot Interferometer, Raju Bhai Kc

Graduate Theses, Dissertations, and Problem Reports

Single photons emitted from self-assembled quantum dots have been widely studied to use as a promising qubit for quantum information processing. Therefore, it is critical to fully understand the emission spectra from the quantum dot's excitation if we want to use a single photon as a quantum bit. It is almost impossible to produce rotationally symmetric quantum dots due to various growth conditions and restrictions. So the real quantum dots do not have a perfectly symmetric structure. A broken rotational symmetry causes an asymmetric exchange interaction between electron and hole, leading to a fine structure splitting between two excited states. …


Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati Sep 2022

Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati

Dissertations, Theses, and Capstone Projects

Van der Waals materials are a broad class of materials that exhibit unique optoelectronic properties. They provide a rich playground for which they can be integrated into current on-chip devices due to their nanometer-scale size, and be utilized for studying fundamental physics. Strong coupling of emitters to microcavities provides many opportunities for new exotic physics through the formation of hybrid quasi-particles exciton-polaritons. This thesis
focuses on exploring and enhancing nonlinearity of van der Waals materials through strongly coupling to microcavities. By taking advantage of the stacking order of TMDs, we show intense second-harmonic generation from bulk, centrosymmetric TMD systems. In …


Charge Dynamics Of Inas Quantum Dots Under Resonant And Above-Band Excitation, Gary R. Lander Jr Jan 2022

Charge Dynamics Of Inas Quantum Dots Under Resonant And Above-Band Excitation, Gary R. Lander Jr

Graduate Theses, Dissertations, and Problem Reports

Research involving light-matter interactions in semiconductor nanostructures has been an interesting topic of investigation for decades. Many systems have been studied for not only probing fundamental physics of the solid state, but also for direct development of technological advancements. Research regarding self-assembled, epitaxially grown quantum dots (QDs) has proven to be prominent in both regards. The development of a reliable, robust source for the production of quantum bits to be utilized in quantum information protocols is a leading venture in the world of condensed matter and solid-state physics. Fluorescence from resonantly driven QDs is a promising candidate for the production …


Characterization And Coherent Spin Selective Manipulation Of Quantum Dot Energy Levels, Tristan Anthony Wilkinson Jan 2022

Characterization And Coherent Spin Selective Manipulation Of Quantum Dot Energy Levels, Tristan Anthony Wilkinson

Graduate Theses, Dissertations, and Problem Reports

Semiconductor quantum dots (QDs) are promising candidates to fulfill a wide range of applications in real-world quantum computing, communication, and networks. Their excellent optical properties such as high brightness, single-photon purity, and narrow linewidths show potential utility in many areas. In order to realize long term goals of integration into complex and scalable quantum information systems, many current challenges must be overcome. One of these challenges is accomplishment of all necessary computing operations within a QD, which might be enabled by coherent manipulation of single QD energy level structures. In the realm of scalability for quantum devices, a way to …


Linear And Non Linear Properties Of Two-Dimensional Exciton-Polaritons, Mandeep Khatoniar Sep 2021

Linear And Non Linear Properties Of Two-Dimensional Exciton-Polaritons, Mandeep Khatoniar

Dissertations, Theses, and Capstone Projects

Technology has been accelerating at breakneck speed since the first quantum revolution, an era that ushered transistors and lasers in the late 1940s and early 1960s. Both of these technologies relied on a matured understanding of quantum theories and since their inception has propelled innovation and development in various sectors like communications, metrology, and sensing. Optical technologies were thought to be the game changers in terms of logic and computing operations, with the elevator pitch being "computing at speed of light", a fundamental speed limit imposed by this universe’s legal system (a.k.a physics). However, it was soon realized that that …


Photoemission Investigation Of Topological Quantum Materials, Klauss M. Dimitri Jan 2021

Photoemission Investigation Of Topological Quantum Materials, Klauss M. Dimitri

Honors Undergraduate Theses

Topological insulators (TIs) are a class of quantum materials, which behave as insulators in the bulk, yet possess gapless spin-polarized surface states, which are robust against nonmagnetic impurities. The unique properties of TIs make them attractive not only for studying various fundamental phenomena in condensed matter and particle physics, but also as promising candidates for applications ranging from spintronics to quantum computation. Within the topological insulator realm, a great deal of focus has been placed on discovering new quantum materials, however, ideal multi-modal quantum materials have yet to be found. Here we study alpha-PdBi2, KFe2Te2, and DySb compounds including others …


Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi Jan 2018

Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi

Honors Undergraduate Theses

A variant of RABBITT pump-probe spectroscopy in which the attosecond pulse train comprises both even and odd harmonics of the fundamental IR probe frequency is explored to measure time-resolved photoelectron emission in systems that exhibit autoionizing states. It is shown that the group delay of both one-photon and two-photon resonant transitions is directly encoded in the energy-resolved photoelectron anisotropy as a function of the pump-probe time-delay. This principle is illustrated for a 1D model with symmetric zero-range potentials that supports both bound states and shape-resonances. The model is studied using both perturbation theory and solving the time-dependent Schodinger equation on …