Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

2016

Institution
Keyword
Publication
Publication Type

Articles 61 - 71 of 71

Full-Text Articles in Physics

Drying Methods For The Fabrication Of Polymer Foam Material, Dalton Echard Jan 2016

Drying Methods For The Fabrication Of Polymer Foam Material, Dalton Echard

Theses and Dissertations

This is a report on the study of the drying of nanoporous polymer foam material fabricated by photolithogtaphic methods. Three drying methods were employed, which were air drying, supercritical drying and freeze drying. After fabrication and drying, physical properties of the polymer foams were measured. These measurements included density of the material, Young’s modulus, surface area, and the shape of the skeletal particles. The measurements determined the effect of the polymer concentration and the effect of drying methods. It was determined that polymer concentration had a much larger effect on the properties of the materials than the drying method.


Multiferroicity In Iron Vanadate, Magnetite And Polyvinylidene Fluoride Nanocomposite Films, Ehab Hamdy Abdelmonaim Abdelhamid Jan 2016

Multiferroicity In Iron Vanadate, Magnetite And Polyvinylidene Fluoride Nanocomposite Films, Ehab Hamdy Abdelmonaim Abdelhamid

Wayne State University Dissertations

With the increasing demand on cheaper and better performance multifunctional materials for different applications, it is becoming more crucial to have a better understanding of the physics needed to tailor more devices and materials to fit better in every day’s technological needs. Materials which show more than one ferroic order simultaneously –namely, multiferroics– are of particular importance for their potential applications as multiple state memory elements, transducers and electrically tunable microwave devices.

In this work, we studied FeVO4 single crystals as an example on low symmetry multiferroics. We focused on the anisotropy in those crystals in an attempt to nail …


Biolabeling Through The Use Of Water-Soluble Colloidal Quantum Dots, Cody Stombaugh Jan 2016

Biolabeling Through The Use Of Water-Soluble Colloidal Quantum Dots, Cody Stombaugh

Honors Projects

Nanomaterials continues to be a growing field of study due to their wide range of potential applications. Quantum dots are artificially synthesized crystalline clusters of atoms able to confine electron motion as a result of their incredibly small size. Recently, medical applications of nanomaterials have expanded greatly. Quantum dots are ideal for biolabeling due to their rather narrow photoluminescence emission peaks. By synthesizing quantum dots of a specific diameter, it is possible to predetermine the peak photoluminescence wavelength of a sample. Through ligand exchange and immunoconjugation of the quantum dots with proteins, it is possible to use the quantum dots …


Development Of Iii-Sb Based Technologies For P-Channel Mosfet In Cmos Applications, Shailesh Kumar Madisetti Jan 2016

Development Of Iii-Sb Based Technologies For P-Channel Mosfet In Cmos Applications, Shailesh Kumar Madisetti

Legacy Theses & Dissertations (2009 - 2024)

The continuous scaling of silicon CMOS predicts the end of roadmap due to the difficulties such as that arise from electrostatic integrity, design complexities, and power dissipation. These fundamental and practical limitations bring the need for innovative design architectures or alternate materials with higher carrier transport than current Si based materials. New device designs such as multigate/gate-all-around architectures improve electrostatics while alternate materials like III-Vs such as III-As for electrons and III-Sbs for holes increase operational speed, lower power dissipation and thereby improve performance of the transistors due to their low effective mass and faster transport properties. Further, application of …


Magnetoresistance Of A Low-K Dielectric, Brian Thomas Mcgowan Jan 2016

Magnetoresistance Of A Low-K Dielectric, Brian Thomas Mcgowan

Legacy Theses & Dissertations (2009 - 2024)

Low-k dielectrics have been incorporated into advanced computer chip technologies as a part of the continuous effort to improve computer chip performance. One drawback associated with the implementation of low-k dielectrics is the large leakage current which conducts through the material, relative to silica. Another drawback is that the breakdown voltage of low-k dielectrics is low, relative to silica [1]. This low breakdown voltage makes accurate reliability assessment of the failure mode time dependent dielectric breakdown (TDDB) in low-k dielectrics critical for the successful implementation of these materials. The accuracy with which one can assess this reliability is currently a …


Tailoring The Optical Properties Of Silicon With Ion Beam Created Nanostructures For Advanced Photonics Applications, Perveen Akhter Jan 2016

Tailoring The Optical Properties Of Silicon With Ion Beam Created Nanostructures For Advanced Photonics Applications, Perveen Akhter

Legacy Theses & Dissertations (2009 - 2024)

In today’s fast life, energy consumption has increased more than ever and with that the demand for a renewable and cleaner energy source as a substitute for the fossil fuels has also increased. Solar radiations are the ultimate source of energy but harvesting this energy in a cost effective way is a challenging task. Si is the dominating material for microelectronics and photovoltaics. But owing to its indirect band gap, Si is an inefficient light absorber, thus requiring a thickness of solar cells beyond tens of microns which increases the cost of solar energy. Therefore, techniques to increase light absorption …


Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister Jan 2016

Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister

Senior Projects Spring 2016

This project is comprised of a set of parallel investigations, which share the common mo- tivation of increasing the efficiency of photovoltaics. First, the reader is introduced to core concepts of photovoltaic energy conversion via a semi-classical description of the phys- ical system. Second, a key player in photovoltaic efficiency calculations, the exciton, is discussed in greater quantum mechanical detail. The reader will be taken through a nu- merical derivation of the low-energy exciton states in various geometries, including a line segment, a circle and a sphere. These numerical calculations are done using Mathematica, a computer program which, due to …


Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan Jan 2016

Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan

Theses and Dissertations--Chemical and Materials Engineering

Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si …


Dft Investigations Of Hydrogen Storage Materials, Gang Wang Jan 2016

Dft Investigations Of Hydrogen Storage Materials, Gang Wang

Doctoral Dissertations

"Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation.

Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of …


Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang Jan 2016

Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

In this study, aggregation of TiO2 (rutile and anatase) submicron particles in deionized (DI) water under ultra-violet (UV) light irradiation was investigated. While no aggregation was observed in the dark, rutile and anatase submicron particles started aggregating upon application of UV light and ceased aggregation in about 2 and 8.4 h, respectively. It has been demonstrated that UV light directly mitigated the particle mobility of TiO2, resulting in a neutralization effect of the Zeta potential. It was also observed that rutile particles aggregated much faster than anatase particles under UV radiation, indicating that the Zeta potential of …


Investigation Of The Resistance To Demagnetization In Bulk Rare-Earth Magnets Comprised Of Crystallographically-Aligned, Single-Domain Crystallites With Modified Intergranular Phase, Jie Li Jan 2016

Investigation Of The Resistance To Demagnetization In Bulk Rare-Earth Magnets Comprised Of Crystallographically-Aligned, Single-Domain Crystallites With Modified Intergranular Phase, Jie Li

Dissertations, Master's Theses and Master's Reports

The research presented in this dissertation investigates whether an increased coercivity of Neodymium-Iron-Boron (Nd2Fe14B) based bulk magnets at elevated temperature (160°C), which is now only obtainable by substituting ~7wt% dysprosium (Dy) for a portion of neodymium (Nd), can be achieved through specific microstructural modifications with decreased Dy concentrations. The approach is to reduce the size of individual crystallographically-aligned grains in the magnet so that each grain can only support a single magnetic domain and to simultaneously dilute the Nd-Fe inter-granular phase present in conventional magnets with a non-Fe-containing, Nd-rich phase (Nd-Cu alloy) in an attempt to partially magnetically isolate the …