Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2016

Discipline
Institution
Keyword
Publication
Publication Type

Articles 61 - 90 of 1703

Full-Text Articles in Physics

Memory Effects In Brownian Motion, Random Walks Under Confining Potentials, And Relaxation Of Quantum Systems, Matthew Chase Dec 2016

Memory Effects In Brownian Motion, Random Walks Under Confining Potentials, And Relaxation Of Quantum Systems, Matthew Chase

Physics & Astronomy ETDs

This dissertation is a report on a number of distinct topics in the field of non-equilibrium statistical mechanics including the evolution of classical as well as quantum systems.

The evolution of an object that is described by the Ornstein-Uhlenbeck process generalized through a time-nonlocal attraction is considered. The time-nonlocality is taken to be represented in the Langevin description through the presence of memory. Analysis of the Langevin equation is performed for algebraic and delay-type memories. An equivalent \emph{bona-fide} Fokker-Planck equation is constructed.

A random walker subjected to a non-standard confining potential, taken to be a piece-wise linear function, is analyzed. …


De Haas-Van Alphen Study Of Role Of 4f Electrons In Antiferromagnetic Cezn₁₁ As Compared To Its Nonmagnetic Analog Lazn₁₁, S. F. Blake, Halyna Hodovanets, A. Mccollam, S. L. Bud'ko, P. C. Canfield, A. I. Coldea Dec 2016

De Haas-Van Alphen Study Of Role Of 4f Electrons In Antiferromagnetic Cezn₁₁ As Compared To Its Nonmagnetic Analog Lazn₁₁, S. F. Blake, Halyna Hodovanets, A. Mccollam, S. L. Bud'ko, P. C. Canfield, A. I. Coldea

Physics Faculty Research & Creative Works

We present a de Haas-van Alphen study of the Fermi surface of the low-temperature antiferromagnet CeZn11 and its nonmagnetic analog LaZn11, measured by torque magnetometry up to fields of 33T and at temperatures down to 320mK. Both systems possess similar de Haas-van Alphen frequencies, with three clear sets of features -- ranging from 50T to 4kT -- corresponding to three bands of a complex Fermi surface, with an expected fourth band also seen weakly in CeZn11. The effective masses of the charge carriers are very light ( < 1me) in LaZn11 but a factor …


Structural Reinforcement Through Liquid Encapsulation, Alin Cristian Chipara, Peter Samora Owuor, Sanjit Bhowmick, Gustavo Brunetto, S. A. Syed Asif, Mircea Chipara, Robert Vajtai, Jun Lou, Douglas S. Galvao, Chandra Sekhar Tiwary Dec 2016

Structural Reinforcement Through Liquid Encapsulation, Alin Cristian Chipara, Peter Samora Owuor, Sanjit Bhowmick, Gustavo Brunetto, S. A. Syed Asif, Mircea Chipara, Robert Vajtai, Jun Lou, Douglas S. Galvao, Chandra Sekhar Tiwary

Physics and Astronomy Faculty Publications and Presentations

The liquid inside a solid material is one of the most common composite materials in nature. The interface between solid–liquid plays an important role in unique deformation. Here, model systems of two polymers (polydimethylsiloxane–polyvinylidenefluoride) are used to make sphere of solid with liquid inside it.


Use Of Solid N2 Surfaces In Metastable Particle Detection, Wladyslaw Kedzierski, J. W. Mcconkey Dec 2016

Use Of Solid N2 Surfaces In Metastable Particle Detection, Wladyslaw Kedzierski, J. W. Mcconkey

Physics Publications

A novel detector is described in which solid nitrogen at 17 K is used as the most significant element. Metastable particles impinge on this element and immediately transfer their internal energy to the solid nitrogen producing photons, via excimer formation or otherwise, whose wavelength depends on the metastable being detected and the energy transfer process. The performance of the instrument for the detection of atomic oxygen and molecular nitrogen metastables is discussed.


Beta-Delayed Neutron Data And Models For Scale, Kemper Dyar Talley Dec 2016

Beta-Delayed Neutron Data And Models For Scale, Kemper Dyar Talley

Doctoral Dissertations

Recent advancements in experimental and theoretical nuclear physics have yielded new data and models that more accurately describe the decay of fission products compared to historical data currently used for many applications. This work examines the effect of the adopting the Effective Density Model theory for beta-delayed neutron emission probability on calculations of delayed-neutron production and fission product nuclide concentrations after fission bursts as well as the total delayed neutron fraction in comparison with the Keepin 6-group model. We use ORIGEN within the SCALE code package for these calculations. We show quantitative changes to the isotopic concentrations for fallout nuclides …


Large Scale Brownian Dynamics Simulation Of Dilute And Semidilute Polymeric Solutions, Amir Saadat Dec 2016

Large Scale Brownian Dynamics Simulation Of Dilute And Semidilute Polymeric Solutions, Amir Saadat

Doctoral Dissertations

Excluded Volume (EV) and Hydrodynamic Interactions (HI) play a central role in static and dynamic properties of macromolecules in solution under equilibrium and nonequilibrium settings. The computational cost of incorporating HI in mesoscale Brownian dynamics (BD) simulations, particularly in the semidilute regime has motivated significant research aimed at development of high-fidelity and efficient techniques.

In this study, I have developed several algorithms for the mesoscale bead-spring representation of a macromolecular solution in dilute and semidilute regimes. The Krylov subspace method enables fast calculation of single chain dynamics with simulation time scaling of O(Nb2) [order N …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Effects Of Time And Diffusion Phase-Lags In A Thick Circular Plate Due To A Ring Load With Axisymmetric Heat Supply, R. Kumar, N. Sharma, P. Lata Dec 2016

Effects Of Time And Diffusion Phase-Lags In A Thick Circular Plate Due To A Ring Load With Axisymmetric Heat Supply, R. Kumar, N. Sharma, P. Lata

Applications and Applied Mathematics: An International Journal (AAM)

The purpose of this paper is to depict the effect of time, thermal, and diffusion phase lags due to axisymmetric heat supply in a ring. The problem is discussed within the context of DPLT and DPLD models. The upper and lower surfaces of the ring are traction-free and subjected to an axisymmetric heat supply. The solution is found by using Laplace and Hankel transform techniques. The analytical expressions of displacements, stresses and chemical potential, temperature and mass concentration are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results …


Foundations Of Wave Phenomena, Charles G. Torre Dec 2016

Foundations Of Wave Phenomena, Charles G. Torre

Charles G. Torre

This is an undergraduate text on the mathematical foundations of wave phenomena. Version 8.2.


Transport And Optical Conductivity In The Hubbard Model: A High-Temperature Expansion Perspective, Edward Perepelitsky, Andrew Galatas, Jernej Mravlje, Rok Žitko, Ehsan Khatami, B. Shastry, Antoine Georges Dec 2016

Transport And Optical Conductivity In The Hubbard Model: A High-Temperature Expansion Perspective, Edward Perepelitsky, Andrew Galatas, Jernej Mravlje, Rok Žitko, Ehsan Khatami, B. Shastry, Antoine Georges

Faculty Publications

We derive analytical expressions for the spectral moments of the dynamical response functions of the Hubbard model using the high-temperature series expansion. We consider generic dimension d as well as the infinite-d limit, arbitrary electron density n, and both finite and infinite repulsion U. We use moment-reconstruction methods to obtain the one-electron spectral function, the self-energy, and the optical conductivity. They are all smooth functions at high temperature and, at large U, they are featureless with characteristic widths of the order of the lattice hopping parameter t. In the infinite-d limit, we compare the series expansion results with accurate numerical …


Elasticity Of Cylindrical Black Holes, Conrad Pearson Dec 2016

Elasticity Of Cylindrical Black Holes, Conrad Pearson

Physics

Black holes are regions of strong gravity, and are often regarded as behaving like drops of fluid. When this line of thought is applied to cylindrical black holes (black cylinders), a mapping can be made between known instabilities for black cylinders and ordinary fluid cylinders. However, this known correlation is increasingly less accurate for lower spatial dimensions, and I seek to correct this discrepancy in this thesis. By considering soft solids instead of pure fluids, elastic energy can be included, which brings us closer to a direct comparison. In improving this mapping, it becomes possible to better understand the behavior …


Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao Dec 2016

Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao

Open Access Dissertations

Quantum computing is an emerging area between computer science and physics. Numerous problems in quantum computing involve quantum many-body interactions. This dissertation concerns the problem of simulating arbitrary quantum many-body interactions using realistic two-body interactions. To address this issue, a general class of techniques called perturbative reductions (or perturbative gadgets) is adopted from quantum complexity theory and in this dissertation these techniques are improved for experimental considerations. The idea of perturbative reduction is based on the mathematical machinery of perturbation theory in quantum physics. A central theme of this dissertation is then to analyze the combinatorial structure of the perturbation …


Gravity-Assist Trajectories To Venus, Mars, And The Ice Giants: Mission Design With Human And Robotic Applications, Kyle M. Hughes Dec 2016

Gravity-Assist Trajectories To Venus, Mars, And The Ice Giants: Mission Design With Human And Robotic Applications, Kyle M. Hughes

Open Access Dissertations

Gravity-assist trajectories to Uranus and Neptune are found (with the allowance of impulsive maneuvers using chemical propulsion) for launch dates ranging from 2024 to 2038 for Uranus and 2020 to 2070 for Neptune. Solutions are found using a patched conic model with analytical ephemeris via the Satellite Tour Design Program (STOUR), originally developed at the Jet Propulsion Laboratory (JPL). Delivered payload mass is computed for all solutions for select launch vehicles, and attractive solutions are identified as those that deliver a specified amount of payload mass into orbit at the target body in minimum time. The best cases for each …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


The Search For Dark Matter In Xenon: Innovative Calibration Strategies And Novel Search Channels, Shayne Edward Reichard Dec 2016

The Search For Dark Matter In Xenon: Innovative Calibration Strategies And Novel Search Channels, Shayne Edward Reichard

Open Access Dissertations

The direct detection dark matter experiment XENON1T became operational in early 2016, heralding the era of tonne-scale dark matter detectors. Direct detection experiments typically search for elastic scatters of dark matter particles off target nuclei. XENON1T's larger xenon target provides the advantage of stronger dark matter signals and lower background rates compared to its predecessors, XENON10 and XENON100; but, at the same time, calibration of the detector's response to backgrounds with traditional external sources becomes exceedingly more difficult.

A 220Rn source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid …


Dynamic Holography In Semiconductors And Biomedical Optics, Hao Sun Dec 2016

Dynamic Holography In Semiconductors And Biomedical Optics, Hao Sun

Open Access Dissertations

Three-dimensional scanning and display are rapidly-advancing new technologies with important commercial drivers such as 3D printing and remote imaging for big data applications. Holography is a natural approach to recording and displaying three-dimensional information because it uses phase-sensitive interferometry to record interference patterns when a reference beam encounters coherent light arriving from an object. The 3D information is contained in the values of wave optics. Holography is a broad field that goes beyond recording and displaying. For instance, holographic optical elements, which take advantage of holographic imaging principles, perform the functions of lenses, gratings or mirrors. Holographic interferometry is also …


Dielectric Analysis Of Aqueous Poly(L-Glutamic Acid) And Poly-L-(Glutamic Acid4, Tyrosine1) Solutions At High Frequencies From Capacitance Measurements, Jorge Monreal, Tatiana Eggers, Manh-Huong Phan Dec 2016

Dielectric Analysis Of Aqueous Poly(L-Glutamic Acid) And Poly-L-(Glutamic Acid4, Tyrosine1) Solutions At High Frequencies From Capacitance Measurements, Jorge Monreal, Tatiana Eggers, Manh-Huong Phan

Physics Faculty Publications

A new parallel-plate capacitor fixture has been designed and successfully used to measure dielectric loss of polyelectrolyte solutions with volumes as low as droplets of 13–26 μL. It is particularly useful when studying polypeptides that are either high-cost or can be synthesized only in limited quantities. The ease with which the fixture can be used to obtain preliminary dielectric loss data yields savings in time and cost. In this study capacitance measurements were performed in a wide range of frequencies between 1 and 800 MHz using an Agilent 4191RF Impedance Analyzer. Accuracy of measurements was carefully examined through a comparison …


Dispersion Characteristics Of Non-Newtonian Fluid During Transportation Of Nanoparticles In Permeable Capillary, Rekha Bali, Nivedita Gupta, Swati Mishra Dec 2016

Dispersion Characteristics Of Non-Newtonian Fluid During Transportation Of Nanoparticles In Permeable Capillary, Rekha Bali, Nivedita Gupta, Swati Mishra

Applications and Applied Mathematics: An International Journal (AAM)

The present analysis deals with the dispersion characteristics of blood described as Herschel- Bulkley fluid in capillary with permeable walls for fluid and impermeable for the nanoparticles. The contribution of molecular and convective diffusion is recalled from the Taylor and Aris coefficient of diffusion. The effective longitudinal diffusion depends on three parameters namely rheological parameter, pressure parameter, and the permeability parameter. We investigate the influence of the longitudinal transport of nanoparticles with permeable blood vessels on the effective dispersion. It shows that the effective diffusion of nanoparticles reduces with increase in radius of the plug region (i.e., the volume of …


Analysis Of Groundwater Contaminants Using Aris Dispersion Model, Nirmala P. Ratchagar, S. Senthamilselvi Dec 2016

Analysis Of Groundwater Contaminants Using Aris Dispersion Model, Nirmala P. Ratchagar, S. Senthamilselvi

Applications and Applied Mathematics: An International Journal (AAM)

The paper presents the study of dispersion of contaminants in unsteady laminar flow of an incompressible fluid (groundwater) bounded by an upper porous layer and lower impermeable layer with interphase mass transfer. An analytical solution of unsteady advection dispersion based on Aris-Barton method of moments is presented up to the second moment about the mean in axial direction.


Hydromagnetic Peristaltic Transportation With Porous Medium Through An Asymmetric Vertical Tapered Channel And Joule Heating, S. R. Kumar Dec 2016

Hydromagnetic Peristaltic Transportation With Porous Medium Through An Asymmetric Vertical Tapered Channel And Joule Heating, S. R. Kumar

Applications and Applied Mathematics: An International Journal (AAM)

The present paper deals with a theoretical investigation of the hydromagnetic peristaltic transportation with porous medium through coaxial asymmetric vertical tapered channel and joule heating which has been studied under the assumption of long wavelength approximations. Exact analytical expressions of axial velocity, volume flow rate, pressure gradient, temperature and heat transfer coefficient at both walls were calculated. The effects of various emerging parameters, Hartmann number, Non-uniform parameter, Prandtl number, Heat generator parameter, Brinkman number, Porous parameter are discussed through the use of graphs. We notice from the figures that the temperature of the fluid increases in the entire vertical tapered …


Non-Inflationary Bianchi Type Vi0 Model In Rosen’S Bimetric Gravity, M. S. Borkar, N. P. Gaikwad Dec 2016

Non-Inflationary Bianchi Type Vi0 Model In Rosen’S Bimetric Gravity, M. S. Borkar, N. P. Gaikwad

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we have present the solution of Bianchi type VI0 space-time by solving the Rosen’s field equations with massless scalar field φ and with constant scalar potential V(φ) for flat region. It is observed that the scalar field φ is an increasing function of time and affects the physical parameters of the model and leads to non-inflationary type solution of model, which contradicts the inflationary scenario. Other geometrical and physical properties of the model in relation to this non-inflationary model are also studied.


Complex Solutions Of The Time Fractional Gross-Pitaevskii (Gp) Equation With External Potential By Using A Reliable Method, Nasir Taghizadeh, Mona N. Foumani Dec 2016

Complex Solutions Of The Time Fractional Gross-Pitaevskii (Gp) Equation With External Potential By Using A Reliable Method, Nasir Taghizadeh, Mona N. Foumani

Applications and Applied Mathematics: An International Journal (AAM)

In this article, modified (G'/G )-expansion method is presented to establish the exact complex solutions of the time fractional Gross-Pitaevskii (GP) equation in the sense of the conformable fractional derivative. This method is an effective method in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The present approach has the potential to be applied to other nonlinear fractional differential equations. Based on two transformations, fractional GP equation can be converted into nonlinear ordinary differential equation of integer orders. In the end, we will discuss the solutions of the fractional GP equation with external potentials.


Coursenetworking And Community: Linking Online Discussion Networks And Course Success, Adrienne L. Traxler, Andrew Gavrin, Rebecca Lindell Dec 2016

Coursenetworking And Community: Linking Online Discussion Networks And Course Success, Adrienne L. Traxler, Andrew Gavrin, Rebecca Lindell

Physics Faculty Publications

Large introductory science courses are isolating for many students, and reducing this isolation is an important factor for student retention in college. Active learning courses often build community among students as an explicit goal, but many commuter or non-traditional students have limited on-campus time. Online discussion forums provide one tool for engaging students with each other outside of class time. This study uses social network analysis with forum data from an introductory physics course to examine students' positions in the class discussion network and link it to their final course grades. We find that, contrary to expectations, there is no …


Synthesis And Analysis Of Carbon-Transition Metal Oxide Composites, Binod Manandhar Dec 2016

Synthesis And Analysis Of Carbon-Transition Metal Oxide Composites, Binod Manandhar

Theses and Dissertations

Graphene, a two-dimensional honeycomb structure of carbon due to its high electrical and thermal conductivity, and high specific surface area, is an excellent candidate for nano-electronics and energy storage. However, it is very difficult and expensive to produce a single layered graphene by the traditional method of mechanical exfoliation of highly oriented pyrolytic graphite (HOPG). It is mainly manufactured by chemical vapor deposition (CVD) or more economically by chemical exfoliation of graphite by Hummer’s modified method. But there is a major disadvantage in using the chemical exfoliation, instead of forming single layer of pure graphene, a non-stoichiometric and insulating graphene …


Wave Propagation And Imaging In Structured Optical Media, Zun Huang Dec 2016

Wave Propagation And Imaging In Structured Optical Media, Zun Huang

Open Access Dissertations

Structured optical media, usually characterized by periodic patterns of inhomogeneities in bulk materials, provide a new approach to ultimate control of wave propagation with possible practical applications: from distributed feedback lasers by diffraction gratings, to highly nonlinear performance for super-continuum generation, to fiber-optic telecommunications by microstructured photonic crystal fibers, to invisibility cloaking, to super-resolution imaging with metamaterials etc.

In particular, structured optical media allow to manipulate the wave propagation and dispersion. In this thesis, we focus on engineering the propagation phase dispersion by modulating the compositions and dimensions of the periodic elements. By tailoring the dispersion in momentum space, we …


Modeling The Impact Of Land Surface Feedbacks On Post Landfall Tropical Cyclones, Subashini Subramanian Dec 2016

Modeling The Impact Of Land Surface Feedbacks On Post Landfall Tropical Cyclones, Subashini Subramanian

Open Access Dissertations

The land surface is an important component of numerical models. The land surface models are modules that control energy partitioning, compute surface exchange coefficients and form the only physical boundary in a regional scale numerical model. Thus, an accurate representation of land surface is critical to compute surface fluxes, represent the boundary layer evolution and affect changes in weather systems. Land surface can affect landfalling tropical cyclones in two ways: (i) when the cyclone is offshore and land can influence cyclones by introducing dry (or moist) air that can weaken (or strengthen) the organized convective structure of cyclones, and (ii) …


Impact Of Permeable Lining Of The Wall On The Peristaltic Flow Of Herschel Bulkley Fluid, G. C. Sankad, Asha Patil Dec 2016

Impact Of Permeable Lining Of The Wall On The Peristaltic Flow Of Herschel Bulkley Fluid, G. C. Sankad, Asha Patil

Applications and Applied Mathematics: An International Journal (AAM)

The peristaltic motion is modeled for the Herschel Bulkley fluid, considered to flow in a non-uniform inclined channel. The channel wall is supposed to be lined with a non-erodible porous material. The flow is considered to be moving in a wave frame of reference moving with same velocity as of the sinusoidal wave. Low Reynolds number and long wave length assumptions are made to solve the model. Analytical solution is obtained for the pressure difference and also for the frictional force. Graphs are plotted, using Mathematica software, for both the results of pressure difference and frictional force against time average …


Unsteady Mhd Flow Past An Impulsively Started Inclined Plate With Variable Temperature And Mass Diffusion In The Presence Of Hall Current, U. S. Rajput, Gaurav Kumar Dec 2016

Unsteady Mhd Flow Past An Impulsively Started Inclined Plate With Variable Temperature And Mass Diffusion In The Presence Of Hall Current, U. S. Rajput, Gaurav Kumar

Applications and Applied Mathematics: An International Journal (AAM)

No abstract provided.


Iterative Solution Of Fractional Diffusion Equation Modelling Anomalous Diffusion, A. Elsaid, S. Shamseldeen, S. Madkour Dec 2016

Iterative Solution Of Fractional Diffusion Equation Modelling Anomalous Diffusion, A. Elsaid, S. Shamseldeen, S. Madkour

Applications and Applied Mathematics: An International Journal (AAM)

In this article, we study the fractional diffusion equation with spatial Riesz fractional derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution is obtained based on properties of Riesz fractional derivative operator and utilizing the optimal homotopy analysis method (OHAM). Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameter on the solution behavior.


A Laboratory Facility To Study Gas-Aerosol-Cloud Interactions In A Turbulent Environment: The Π Chamber, K. Chang, J. Bench, M. Brege, Will Cantrell, K. Chandrakar, David Ciochetto, Claudio Mazzoleni, Lynn Mazzoleni, Dennis Niedermeier, R. A. Shaw Dec 2016

A Laboratory Facility To Study Gas-Aerosol-Cloud Interactions In A Turbulent Environment: The Π Chamber, K. Chang, J. Bench, M. Brege, Will Cantrell, K. Chandrakar, David Ciochetto, Claudio Mazzoleni, Lynn Mazzoleni, Dennis Niedermeier, R. A. Shaw

Department of Physics Publications

A detailed understanding of interactions of aerosols, cloud droplets/ice crystals, and trace gases within the atmosphere is of prime importance for an accurate understanding of Earth’s weather and climate. One aspect that remains especially vexing is that clouds are ubiquitously turbulent, and therefore thermodynamic and compositional variables, such as water vapor supersaturation, fluctuate in space and time. With these problems in mind, a multiphase, turbulent reaction chamber—called the Π chamber because of the internal volume of 3.14 m3 with the cylindrical insert installed—has been developed. It is capable of pressures ranging from 1,000 to –60 hPa and can sustain …