Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 35 of 35

Full-Text Articles in Physics

A Hard X-Ray Compton Source At Cbeta, K.E. Deitrick, J. Crone, C. Franck, G.H. Hoffstaetter, Geoffrey A. Krafft, B. D. Muratori, H. L. Owen, Balša Terzić, P. H. Williams Jan 2021

A Hard X-Ray Compton Source At Cbeta, K.E. Deitrick, J. Crone, C. Franck, G.H. Hoffstaetter, Geoffrey A. Krafft, B. D. Muratori, H. L. Owen, Balša Terzić, P. H. Williams

Physics Faculty Publications

Inverse Compton scattering (ICS) holds the potential for future high flux, narrow bandwidth x-ray sources driven by high quality, high repetition rate electron beams. CBETA, the Cornell-BNL Energy recovery linac (ERL) Test Accelerator, is the world’s first superconducting radiofrequency multi-turn ERL, with a maximum energy of 150 MeV, capable of ICS production of x-rays above 400 keV. We present an update on the bypass design and anticipated parameters of a compact ICS source at CBETA. X-ray parameters from the CBETA ICS are compared to those of leading synchrotron radiation facilities, demonstrating that, above a few hundred keV, photon beams produced …


Nb3Sn Coating Of Twin Axis Cavity For Accelerator Applications, Jayendrika K. Tiskumara, Subashini U. De Silva, Jean Delayen, U. Pudasaini, C. E. Reece, H. Park, G. Eremeev Jan 2021

Nb3Sn Coating Of Twin Axis Cavity For Accelerator Applications, Jayendrika K. Tiskumara, Subashini U. De Silva, Jean Delayen, U. Pudasaini, C. E. Reece, H. Park, G. Eremeev

Physics Faculty Publications

A Superconducting twin axis cavity consisting of two identical beam pipes that can accelerate and decelerate beams within the same structure has been proposed for the Energy Recovery Linac (ERL) applications. There are two niobium twin axis cavities at JLab fabricated with the intention of later Nb₃Sn coating and now we are progressing to coat them using vapor diffusion method. Nb₃Sn is a potential alternate material for replacing Nb in SRF cavities for better performance and reducing operational costs. Because of advanced geometry, larger surface area, increased number of ports and hard to reach areas of the twin axis cavities, …


Design Of An Rf-Dipole Crabbing Cavity System For The Electron-Ion Collider, Subashini U. De Silva, Jean R. Delayen, H. Park, F. Marhauser, J. Henry, R. A. Rimmer Jan 2021

Design Of An Rf-Dipole Crabbing Cavity System For The Electron-Ion Collider, Subashini U. De Silva, Jean R. Delayen, H. Park, F. Marhauser, J. Henry, R. A. Rimmer

Physics Faculty Publications

The Electron-Ion Collider requires several crabbing systems to facilitate head-on collisions between electron and proton beams in increasing the luminosity at the interaction point. One of the critical rf systems is the 197 MHz crabbing system that will be used in crabbing the proton beam. Many factors such as the low operating frequency, large transverse voltage requirement, tight longitudinal and transverse impedance thresholds, and limited beam line space makes the crabbing cavity design challenging. The rf-dipole cavity design is considered as one of the crabbing cavity options for the 197 MHz crabbing system. The cavity is designed including the HOM …


Measurements Of Magnetic Field Penetration In Superconducting Materials For Srf Cavities, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A.-M. Valente-Feliciano Jan 2021

Measurements Of Magnetic Field Penetration In Superconducting Materials For Srf Cavities, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A.-M. Valente-Feliciano

Physics Faculty Publications

Superconducting radiofrequency (SRF) cavities used in particle accelerators operate in the Meissner state. To achieve high accelerating gradients, the cavity material should stay in the Meissner state under high RF magnetic field without penetration of vortices through the cavity wall. The field onset of flux penetration into a superconductor is an important parameter of merit of alternative superconducting materials other than Nb which can enhance the performance of SRF cavities. There is a need for a simple and efficient technique to measure the onset of field penetration into a superconductor directly. We have developed a Hall probe experimental setup for …


Nb3Sn Coating Of Twin Axis Cavity For Srf Applications, J. K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini, C. E. Reece Jan 2021

Nb3Sn Coating Of Twin Axis Cavity For Srf Applications, J. K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini, C. E. Reece

Physics Faculty Publications

The twin axis cavity with two identical accelerating beams has been proposed for energy recovery linac (ERL) applications. Nb3Sn is a superconducting material with a higher critical temperature and a higher critical field as compared to Nb, which promises a lower operating cost due to higher quality factors. Two niobium twin axis cavities were fabricated at JLab and were proposed to be coated with Nb3Sn. Due to their more complex geometry, the typical coating process used for basic elliptical cavi-ties needs to be improved to coat these cavities. This development advances the current coating system at …