Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 41 of 41

Full-Text Articles in Physics

Coupled Ray-Tracing And Fokker-Planck Ebw Modeling For Spherical Tokamaks, Jakub Urban, Joan Decker, Y. Peysson, Josef Preinhaelter, Gary Taylor, Linda L. Vahala, George Vahala Nov 2009

Coupled Ray-Tracing And Fokker-Planck Ebw Modeling For Spherical Tokamaks, Jakub Urban, Joan Decker, Y. Peysson, Josef Preinhaelter, Gary Taylor, Linda L. Vahala, George Vahala

Electrical & Computer Engineering Faculty Publications

The AMR (Antenna—Mode-conversion—Ray-tracing) code [1, 2] has been recently coupled with the LUKE [3] Fokker-Planck code. This modeling suite is capable of complex simulations of electron Bernstein wave (EBW) emission, heating and current drive. We employ these codes to study EBW heating and current drive performance under spherical tokamak (ST) configurations—typical NSTX discharges are employed. EBW parameters, such as frequency, antenna position and direction, are varied and optimized for particular configurations and objectives. In this way, we show the versatility of EBWs.


Dynamics Of An Atmospheric Pressure Plasma Plume Generated By Submicrosecond Voltage Pulses, Xinpei Lu, Mounir Laroussi Jan 2006

Dynamics Of An Atmospheric Pressure Plasma Plume Generated By Submicrosecond Voltage Pulses, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Nonequilibrium plasmas driven by submicrosecond high voltage pulses have been proven to produce high-energy electrons, which in turn lead to enhanced ionization and excitations. Here, we describe a device capable of launching a cold plasma plume in the surrounding air. This device, "the plasma pencil," is driven by few hundred nanosecond wide pulses at repetition rates of a few kilohertz. Correlation between current-voltage characteristics and fast photography shows that the plasma plume is in fact a small bulletlike volume of plasma traveling at unusually high velocities. A model based on photoionization is used to explain the propagation kinetics of the …


Optimization Of Ultraviolet Emission And Chemical Species Generation From A Pulsed Dielectric Barrier Discharge At Atmospheric Pressure, Xinpei Lu, Mounir Laroussi Jan 2005

Optimization Of Ultraviolet Emission And Chemical Species Generation From A Pulsed Dielectric Barrier Discharge At Atmospheric Pressure, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

One of the attractive features of nonthermal atmospheric pressure plasmas is the ability to achieve enhanced gas phase chemistry without the need for elevated gas temperatures. This attractive characteristic recently led to their extensive use in applications that require low temperatures, such as material processing and biomedical applications. The agents responsible for the efficient plasma reactivity are the ultraviolet (UV) photons and the chemically reactive species. In this paper, in order to optimize the UV radiation and reactive species generation efficiency, the plasma was generated by a dielectric barrier discharge driven by unipolar submicrosecond square pulses. To keep the discharge …


Study Of A Growth Instability Of Γ-In[Sub 2]Se[Sub 3], C. Amory, J. C. Bernede, S. Marsillac Jan 2003

Study Of A Growth Instability Of Γ-In[Sub 2]Se[Sub 3], C. Amory, J. C. Bernede, S. Marsillac

Electrical & Computer Engineering Faculty Publications

γ-In[sub 2]Se[sub 3] thin film are deposited for various substrate temperatures in the range of 523–673 K. This study shows that at 573 and 673 K the thin films are well crystallized with grains aligned along the c axis. Between these temperatures, a domain of instability appears where the γ-In[sub 2]Se[sub 3] thin films have a randomly orientation and the c-lattice parameter increases. The presence of the metastable phase κ-In[sub 2]Se[sub 3], during the growth, can explain the existence of this domain of instability. The insertion of Zn during the preparation process allows us to stabilize the phase κ at …


Cuin1-Xalxse2 Thin Films And Solar Cells, P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, W. N. Shafarman Jun 2002

Cuin1-Xalxse2 Thin Films And Solar Cells, P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, W. N. Shafarman

Electrical & Computer Engineering Faculty Publications

CuIn[sub 1-x]Al[sub x]Se[sub 2] thin films are investigated for their application as the absorber layer material for high efficiency solar cells. Single-phase CuIn[sub 1-x]Al[sub x]Se[sub 2] films were deposited by four source elemental evaporation with a composition range of 0≤x≤0.6. All these films demonstrate a normalized subband gap transmission >85% with 2 µm film thickness. Band gaps obtained from spectroscopic ellipsometry show an increase with the Al content in the CuIn[sub 1-x]Al[sub x]Se[sub 2] film with a bowing parameter of 0.62. The structural properties investigated using x-ray diffraction measurements show a decrease in lattice spacing as the Al content increases. …


High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman Jan 2002

High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman

Electrical & Computer Engineering Faculty Publications

A Cu(InAl)Se2solar cell with 16.9% efficiency is demonstrated using a Cu(InAl)Se2thin film deposited by four-source elemental evaporation and a device structure of glass/Mo/Cu(InAl)Se2/CdS/ZnO/indium tin oxide/(Ni/Algrid)/MgF2. A key to high efficiency is improved adhesion between the Cu(InAl)Se2 and the Mo back contact layer, provided by a 5-nm-thick Ga interlayer, which enabled the Cu(InAl)Se2 to be deposited at a 530 °C substrate temperature. Film and device properties are compared to Cu(InGa)Se2 with the same band gap of 1.16 eV. The solar cells have similar behavior, with performance limited by recombination through …


Textured Mos 2 Thin Films Obtained On Tungsten: Electrical Properties Of The W/Mos 2 Contact, E. Gourmelon, J. C. Bernède, J. Pouzet, S. Marsillac Jan 2000

Textured Mos 2 Thin Films Obtained On Tungsten: Electrical Properties Of The W/Mos 2 Contact, E. Gourmelon, J. C. Bernède, J. Pouzet, S. Marsillac

Electrical & Computer Engineering Faculty Publications

Textured films of molybdenum disulfide have been obtained by solid state reaction between the constituents in thin films form when a (200) oriented tungsten sheet is used as substrate. The crystallites have their c axis perpendicular to the plane of the substrate. The annealing conditions are T=1073K and t=30 min. The films are stoichoimetric and p type. Such highly textured films are achieved without foreign atom addition (Ni, Co...). It appears, as shown by x-ray photoelectron spectroscopy, that a thin WS2 layer is present at the interface W/MoS2. The crystallization process is discussed by a …


Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali Jan 1998

Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Atomic hydrogen cleaning is used to clean InP(100) negative electron affinity photocathodes. Reflection high-energy electron diffraction patterns of reconstructed, phosphorus-stabilized, InP(100) surfaces are obtained after cleaning at ∼400 °C. These surfaces produce high quantum efficiency photocathodes (∼8.5%), in response to 632.8 nm light. Without atomic hydrogen cleaning, activation of InP to negative electron affinity requires heating to ∼530 °C. At this high temperature, phosphorus evaporates preferentially and a rough surface is obtained. These surfaces produce low quantum efficiency photocathodes (∼0.1%). The use of reflection high-energy electron diffraction to measure the thickness of the deposited cesium layer during activation by correlating …


Effect Of Magnetic And Density Fluctuations On The Propagation Of Lower Hybrid Waves In Tokamaks, George Vahala, Linda L. Vahala, Paul T. Bonoli Jan 1992

Effect Of Magnetic And Density Fluctuations On The Propagation Of Lower Hybrid Waves In Tokamaks, George Vahala, Linda L. Vahala, Paul T. Bonoli

Electrical & Computer Engineering Faculty Publications

Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization, The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For …


Systematic Estimate Of Binding Energies Of Weakly Bound Diatomic Molecules, Linda L. Vahala, Mark D. Havey Jan 1984

Systematic Estimate Of Binding Energies Of Weakly Bound Diatomic Molecules, Linda L. Vahala, Mark D. Havey

Electrical & Computer Engineering Faculty Publications

There is often insufficient spectroscopic data for a full RKR inversion to yield a potential for weakly bound diatomic molecules. In these cases, parametrized functions such as the Morse or Thakkar potentials may be used to obtain estimates of the binding energy. The Thakkar potential is more flexible, and has been used successfully on some weakly bound systems. In the more usual case, the Thakkar parameter p, which determines long range behavior R-p, is chosen by p=-a1-1, where a1 is the first Dunham coefficient; p is usually noninteger. The authors present …


Picosecond Laser Pulse Irradiation Of Crystalline Silicon, K. L. Merkle, H. Baumgart, R.H. Uebbing, F. Phillipp Jan 1982

Picosecond Laser Pulse Irradiation Of Crystalline Silicon, K. L. Merkle, H. Baumgart, R.H. Uebbing, F. Phillipp

Electrical & Computer Engineering Faculty Publications

Morphology changes introduced by picosecond laser pulses at λ = 532 nm and 355 nm in (111) and (100) silicon samples are studied by means of optical and high-voltage electron microscopy. Depending on energy fluence, orientation and wavelength, amorphous or highly defective regions may be created. From an analysis of damage thresholds and damage depth distributions it is concluded that melting and energy confinement precedes the formation of the structural changes.