Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

PDF

Series

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 1568

Full-Text Articles in Physics

Assessment Of Bridge Pier Response To Fire, Vehicle Impact, And Air Blast, Chen Fang, Qusai Alomari, Daniel G. Linzell May 2023

Assessment Of Bridge Pier Response To Fire, Vehicle Impact, And Air Blast, Chen Fang, Qusai Alomari, Daniel G. Linzell

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Highway bridges exposed to intentional or unintentional fire followed by combined vehicle impact and air blast are at risk of significant damage and, possibly, collapse. Limited studies examining the complex effects of these extreme demands on bridge support elements and parametrizing their response and damage are found in the open literature. Research that is presented is part of an ongoing numerical investigation examining round, multi-column, reinforced concrete (RC), bridge pier behavior subject to multi-hazard scenarios involving fire, vehicle impact, and air blast. Detailed nonlinear finite element analysis models of single columns and multi-column piers supported by a pile foundation system …


Effect On Focusing Fields By Ferromagnetic Cell Cores In Linear Induction Accelerators, Cooper Guillaume May 2023

Effect On Focusing Fields By Ferromagnetic Cell Cores In Linear Induction Accelerators, Cooper Guillaume

Senior Honors Theses

In the Los Alamos National Laboratories DARHT facility, there are two perpendicular linear induction accelerators, LIAs. The LIAs’ solenoids produce magnetic fields which focus the electron beam. Simultaneously, the accelerating pulse creates a magnetic field. These two field intensities act upon a ferromagnetic material in the cells to enhance magnetic flux density. Due to the nonlinearity of the material, this flux density will reach a saturation point. In turn, the magnetic field intensity of the axial solenoidal magnetic field will be affected and slightly altered. The width of the electron beam will increase, causing a decrease in effectiveness. Through simulation, …


Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim Apr 2023

Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


Thermal Stability Of Platinum-Silicon Alloy Films Grown On Langasite Substrates For Use In Microwave Acoustic Sensor Technology, Kell Fremouw Apr 2023

Thermal Stability Of Platinum-Silicon Alloy Films Grown On Langasite Substrates For Use In Microwave Acoustic Sensor Technology, Kell Fremouw

Honors College

Wireless sensors that can operate in temperatures up to 1000°C are widely needed for real time monitoring of large-scale industrial processes. Such sensors will improve efficiency and prevent component failure. Under previous work at UMaine, Surface Acoustic Wave Resonator (SAWR) sensors fabricated on piezoelectric langasite (La3Ga5SiO14) wafers have shown promise for wireless strain measurements at high temperatures. However, there is a major technical challenge in attaching SAWR langasite based sensors to metal parts because the large differences in the coefficient of thermal expansion (CTE) between langasite and metals leads to large thermal stresses and …


Measuring Radiation Protection: Partners From Across The Nuclear Enterprise Evaluate The Radiation Protection Of Us Army Vehicles, Andrew W. Decker, Robert Prins Apr 2023

Measuring Radiation Protection: Partners From Across The Nuclear Enterprise Evaluate The Radiation Protection Of Us Army Vehicles, Andrew W. Decker, Robert Prins

Faculty Publications

Recent mounting nuclear threats and postures from adversary nation-states, such as Russia, China, North Korea, and Iran, represent a clear danger to the interests and security of the United States of America and its Allies. To meet these threats, the 2022 Nuclear Posture Review requires the Department of Defense (DoD) to design, develop, and manage a combat-credible U.S. military which, among other prioritizations, is survivable. A survivable force can generate combat power despite adversary attacks. As such, the US Army must prepare today to set the conditions for successful conventional warfare on the nuclear battlefields of tomorrow. Our Army cannot …


Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison Mar 2023

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison

Engineering Faculty Articles and Research

In modern communications networks, data is transmitted over long distances using optical fibers. At nodes in the network, the data is converted to an electrical signal to be processed, and then converted back into an optical signal to be sent over fiber optics. This process results in higher power consumption and adds to transmission time. However, by processing the data optically, we can begin to alleviate these issues and surpass systems which rely on electronics. One promising approach for this is plasmonic devices. Plasmonic waveguide devices have smaller footprints than silicon photonics for more compact photonic integrated circuits, although they …


Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros Jan 2023

Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros

Open Educational Resources

This book intends to provide both the fundamentals of Electromagnetics but also some practical applications of the concepts covered. Having taught electromagnetics for several years, the authors feel that many times the field of electromagnetics comes as “old” and often times students do not appreciate the concepts and their importance in everyday applications. The authors intend to accompany the EM concepts with life applications. Hence, students may see the direct impact of the knowledge they acquire through the study of the field of electromagnetics and better appreciate the field.


Editorial: Advances In Acoustic/Elastic Wave Sensing For Information Processing, Taehwa Lee, Chen Shen, Qingbo He Jan 2023

Editorial: Advances In Acoustic/Elastic Wave Sensing For Information Processing, Taehwa Lee, Chen Shen, Qingbo He

Henry M. Rowan College of Engineering Faculty Scholarship

No abstract provided.


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd Jan 2023

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd

Directivity

No abstract provided.


On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang Jan 2023

On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang

Bioelectrics Publications

Dielectric barrier discharges (DBD) are widely utilised non-equilibrium atmospheric pressure plasmas with a diverse range of applications, such as material processing, surface treatment, light sources, pollution control, and medicine. Over the course of several decades, extensive research has been dedicated to the generation of homogeneous DBD (H-DBD), focussing on understanding the transition from H-DBD to filamentary DBD and exploring strategies to create and sustain H-DBD. This paper first discusses the influence of various parameters on DBD, including gas flow, dielectric material, surface conductivity, and mesh electrode. Secondly, a chronological literature review is presented, highlighting the development of H-DBD and the …


More On The Demons Of Thermodynamics, Daniel P. Sheehan, Garret Moddel, James W. Lee Jan 2023

More On The Demons Of Thermodynamics, Daniel P. Sheehan, Garret Moddel, James W. Lee

Chemistry & Biochemistry Faculty Publications

No abstract provided.


Superheating Field In Superconductors With Nanostructured Surfaces, W. P. M. R. Pathirana, A. Gurevich Jan 2023

Superheating Field In Superconductors With Nanostructured Surfaces, W. P. M. R. Pathirana, A. Gurevich

Physics Faculty Publications

We report calculations of a dc superheating field Hsh in superconductors with nanostructured surfaces. Numerical simulations of the Ginzburg-Landau (GL) equations were performed for a superconductor with an inhomogeneous impurity concentration, a thin superconducting layer on top of another superconductor, and superconductor-insulator-superconductor (S-I-S) multilayers.The superheating field was calculated taking into account the instability of the Meissner state with a nonzero wavelength along the surface, which is essential for realistic values of the GL parameter κ. Simulations were done for the materials parameters of Nb and Nb3Sn at different values of κ and the mean free paths. We …


Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions, James K. Arthur Jan 2023

Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions, James K. Arthur

Faculty Journal Articles

Many open-channel turbulent flow studies have been focused on highly constrained conditions. Thus, it is rather conventional to note such flows as being fully developed, fully turbulent, and unaffected by sidewalls and free surface disturbances. However, many real-life flow phenomena in natural water bodies and artificially installed drain channels are not as ideal. This work is aimed at studying some of these unconstrained conditions. This is achieved by using particle image velocimetry measurements of a developing turbulent open-channel flow over a smooth wall. The tested flow effects are low values of the Reynolds number based on the momentum thickness Re …


Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev Jan 2023

Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev

Physics Faculty Publications

We present a new automated method for finding integrable symplectic maps of the plane. These dynamical systems possess a hidden symmetry associated with an existence of conserved quantities, i.e., integrals of motion. The core idea of the algorithm is based on the knowledge that the evolution of an integrable system in the phase space is restricted to a lower-dimensional submanifold. Limiting ourselves to polygon invariants of motion, we analyze the shape of individual trajectories thus successfully distinguishing integrable motion from chaotic cases. For example, our method rediscovers some of the famous McMillan-Suris integrable mappings and ultradiscrete Painlevé equations. In total, …


The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe Jan 2023

The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe

Electrical & Computer Engineering Faculty Publications

The effect of the thickness of the dielectric boundary layer that connects a material of refractive index n1 to another of index n2is considered for the propagation of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a specially chosen non-commuting sequence of collision and streaming operators acting on a basis set of qubits, is theoretically determined that recovers the Maxwell equations to second-order in a small parameter ϵ. For very thin boundary layer the scattering properties of the pulse mimics that found from the Fresnel jump conditions for a plane wave - except that …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


Quantum Efficiency And Lifetime Study For Negative Electron Affinity Gaas Nanopillar Array Photocathode, Md Aziz Ar Rahman, Md Abdullah Mamun, Shukui Zhang, Hani E. Elsayed-Ali Jan 2023

Quantum Efficiency And Lifetime Study For Negative Electron Affinity Gaas Nanopillar Array Photocathode, Md Aziz Ar Rahman, Md Abdullah Mamun, Shukui Zhang, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Recent studies showed significant improvement in quantum efficiency (QE) by negative electron affinity (NEA) GaAs nanopillar array (NPA) photocathodes over their flat surface peers, particularly at 500 ─ 800 nm waveband. However, the underlying physics is yet to be well understood for further improvement in its performance. In this report, NEA GaAs NPA photocathodes with different dimensions were studied. The diameter of the nanopillars varied from 200 ─ 360 nm, the height varied from 230 ─ 1000 nm and the periodicity varied from 470 ─ 630 nm. The QE and photocathode lifetime were measured. Mie-resonance enhancement was observed at tunable …


Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew Dec 2022

Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Imaging of both the positions and orientations of single fluorophores, termed single-molecule orientation-localization microscopy, is a powerful tool for the study of biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here we realize a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the three-dimensional (3D) positions and 3D orientations of single molecules, with precisions of 10.9 nm and 2.0° over a 1.5-μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red molecules transiently bound to lipid-coated spheres, accurately resolving …


A Patient-Specific Algorithm For Lung Segmentation In Chest Radiographs, Manawaduge Supun De Silva, Barath Narayanan Narayanan, Russell C. Hardie Nov 2022

A Patient-Specific Algorithm For Lung Segmentation In Chest Radiographs, Manawaduge Supun De Silva, Barath Narayanan Narayanan, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Lung segmentation plays an important role in computer-aided detection and diagnosis using chest radiographs (CRs). Currently, the U-Net and DeepLabv3+ convolutional neural network architectures are widely used to perform CR lung segmentation. To boost performance, ensemble methods are often used, whereby probability map outputs from several networks operating on the same input image are averaged. However, not all networks perform adequately for any specific patient image, even if the average network performance is good. To address this, we present a novel multi-network ensemble method that employs a selector network. The selector network evaluates the segmentation outputs from several networks; on …


Transition-Metal Ions In Β-Ga2O3 Crystals: Identification Of Ni Acceptors, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, J. Jesenovec, B. L. Dutton, M. D. Mccluskey, Larry E. Halliburton Nov 2022

Transition-Metal Ions In Β-Ga2O3 Crystals: Identification Of Ni Acceptors, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, J. Jesenovec, B. L. Dutton, M. D. Mccluskey, Larry E. Halliburton

Faculty Publications

Excerpt: Transition-metal ions (Ni, Cu, and Zn) in β-Ga2O3 crystals form deep acceptor levels in the lower half of the bandgap. In the present study, we characterize the Ni acceptors in a Czochralski-grown crystal and find that their (0/−) level is approximately 1.40 eV above the maximum of the valence band.


Experimental Evidence That Shear Bands In Metallic Glasses Nucleate Like Cracks, Alan A. Long, Wendelin Wright, Xiaojun Gu, Anna Thackray, Mayisha Nakib, Jonathan T. Uhl, Karin A. Dahmen Nov 2022

Experimental Evidence That Shear Bands In Metallic Glasses Nucleate Like Cracks, Alan A. Long, Wendelin Wright, Xiaojun Gu, Anna Thackray, Mayisha Nakib, Jonathan T. Uhl, Karin A. Dahmen

Faculty Journal Articles

Highly time-resolved mechanical measurements, modeling, and simulations show that large shear bands in bulk metallic glasses nucleate in a manner similar to cracks. When small slips reach a nucleation size, the dynamics changes and the shear band rapidly grows to span the entire sample. Smaller nucleation sizes imply lower ductility. Ductility can be increased by increasing the nucleation size relative to the maximum (“cutoff”) shear band size at the upper edge of the power law scaling range of their size distribution. This can be achieved in three ways: (1) by increasing the nucleation size beyond this cutoff size of the …


Optimizing Switching Of Non-Linear Properties With Hyperbolic Metamaterials, James A. Ethridge, John G. Jones, Manuel R. Ferdinandus, Michael J. Havrilla, Michael A. Marciniak Nov 2022

Optimizing Switching Of Non-Linear Properties With Hyperbolic Metamaterials, James A. Ethridge, John G. Jones, Manuel R. Ferdinandus, Michael J. Havrilla, Michael A. Marciniak

Faculty Publications

Hyperbolic metamaterials have been demonstrated to have special potential in their linear response, but the extent of their non-linear response has not been extensively modeled or measured. In this work, novel non-linear behavior of an ITO/SiO2 layered hyperbolic metamaterial is modeled and experimentally confirmed, specifically a change in the sign of the non-linear absorption with intensity. This behavior is tunable and can be achieved with a simple one-dimensional layered design. Fabrication was performed with physical vapor deposition, and measurements were conducted using the Z-scan technique. Potential applications include tunable optical switches, optical limiters, and tunable components of laser sources.


Electro-Optical Sensors For Atmospheric Turbulence Strength Characterization With Embedded Edge Ai Processing Of Scintillation Patterns, Ernst Polnau, Don L. N. Hettiarachchi, Mikhail A. Vorontsov Oct 2022

Electro-Optical Sensors For Atmospheric Turbulence Strength Characterization With Embedded Edge Ai Processing Of Scintillation Patterns, Ernst Polnau, Don L. N. Hettiarachchi, Mikhail A. Vorontsov

Electro-Optics and Photonics Faculty Publications

This study introduces electro-optical (EO) sensors (TurbNet sensors) that utilize a remote laser beacon (either coherent or incoherent) and an optical receiver with CCD camera and embedded edge AI computer (Jetson Xavier Nx) for in situ evaluation of the path-averaged atmospheric turbulence refractive index structure parameter C-n(2) at a high temporal rate. Evaluation of C-n(2) values was performed using deep neural network (DNN)-based real-time processing of short-exposure laser-beacon light intensity scintillation patterns (images) captured by a TurbNet sensor optical receiver. Several pre-trained DNN models were loaded onto the AI computer and used for TurbNet sensor performance evaluation in a set …


Serpentine Micromixers Using Extensional Mixing Elements, George Tomaras, Chandrasekhar R. Kothapalli, Petru S. Fodor Oct 2022

Serpentine Micromixers Using Extensional Mixing Elements, George Tomaras, Chandrasekhar R. Kothapalli, Petru S. Fodor

Physics Faculty Publications

Computational fluid dynamics modeling was used to characterize the effect of the integration of constrictions defined by the vertices of hyperbolas on the flow structure in microfluidic serpentine channels. In the new topology, the Dean flows characteristic of the pressure-driven fluid motion along curved channels are combined with elongational flows and asymmetric longitudinal eddies that develop in the constriction region. The resulting complex flow structure is characterized by folding and stretching of the fluid volumes, which can promote enhanced mixing. Optimization of the geometrical parameters defining the constriction region allows for the development of an efficient micromixer topology that shows …


Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption, Brian C. Holloway, Christopher A. Lenyk, Timothy D. Gustafson, Nancy C. Giles Oct 2022

Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption, Brian C. Holloway, Christopher A. Lenyk, Timothy D. Gustafson, Nancy C. Giles

Faculty Publications

LiB3O5 (LBO) crystals are used to generate the second, third, and fourth harmonics of near-infrared solid-state lasers. At high power levels, the material’s performance is adversely affected by nonlinear absorption. We show that as-grown crystals contain oxygen and lithium vacancies. Transient absorption bands are formed when these intrinsic defects serve as traps for “free” electrons and holes created by x rays or by three- and four-photon absorption processes. Trapped electrons introduce a band near 300 nm and trapped holes produce bands in the 500-600 nm region. Electron paramagnetic resonance (EPR) is used to identify and characterize the …


Rocket Measurements Of Electron Energy Spectra From Earth’S Photoelectron Production Layer, Glyn A. Collinson, Alex Glocer, Dennis Chornay, Robert Mitchell, Rob Pfaff, Tim Cameron, Nasa Goddard Space Flight Center, Rudy A. Frahm, Traci Rosnack, Chris Pirner, Ted Gass, Jim Clemmons, Aroh Barjatya, Steven Martin, Hassanali Akbari, Shantanab Debchoudhury, Rachel Conway, Francis Eparvier, Eftyhia Zesta, Nikolaos Paschalidis Aug 2022

Rocket Measurements Of Electron Energy Spectra From Earth’S Photoelectron Production Layer, Glyn A. Collinson, Alex Glocer, Dennis Chornay, Robert Mitchell, Rob Pfaff, Tim Cameron, Nasa Goddard Space Flight Center, Rudy A. Frahm, Traci Rosnack, Chris Pirner, Ted Gass, Jim Clemmons, Aroh Barjatya, Steven Martin, Hassanali Akbari, Shantanab Debchoudhury, Rachel Conway, Francis Eparvier, Eftyhia Zesta, Nikolaos Paschalidis

Publications

Photoelectrons are crucial to atmospheric physics. They heat the atmosphere, strengthen 28 planetary ambipolar electric fields, and enhance the outflow of ions to space. However, 29 there exist only a handful of measurements of their energy spectrum near the peak of 30 photoproduction. We present calibrated energy spectra of pristine photoelectrons at their 31 source by a prototype Dual Electrostatic Analyzer (DESA) instrument flown on July 11 32 2021 aboard the Dynamo-2 sounding rocket (NASA № 36.357). Photopeaks arising from 33 30.4nm He-II spectral line were observed throughout the flight above 120km. DESA also 34 successfully resolved the rarely observed …


Developing Optical Devices And Projects For Teaching Engineering, Nathan D. Lemke, John Mccauley, Tristan E. Noble, Grace Riermann, Ellesa St. George, Nathan C. Lindquist, Keith R. Stein, Karen Irene Rogers Aug 2022

Developing Optical Devices And Projects For Teaching Engineering, Nathan D. Lemke, John Mccauley, Tristan E. Noble, Grace Riermann, Ellesa St. George, Nathan C. Lindquist, Keith R. Stein, Karen Irene Rogers

Physics and Engineering Faculty Publications

We are creating a suite of tools and techniques based on optics to be used for teaching a variety of engineering topics. Each tool is intended for non-expert use and without the need for high-end equipment such as vibration-free optical tables. Here we report progress on three such tools: image-plane digital holography for measuring mechanical deformation; schlieren imaging of convective flows using a smart phone; and a simple optical communication protocol using LabVIEW. We will present the designs of the tools and preliminary results from teaching engineering labs and projects with these tools. Specific courses impacted to date include Fluid …


The Missing Link Between Standing-And Traveling-Wave Resonators, Qi Zhong, Haoqi Zhao, Liang Feng, Kurt Busch, Sahin K. Özdemir, Ramy El-Ganainy Aug 2022

The Missing Link Between Standing-And Traveling-Wave Resonators, Qi Zhong, Haoqi Zhao, Liang Feng, Kurt Busch, Sahin K. Özdemir, Ramy El-Ganainy

Michigan Tech Publications

Optical resonators are structures that utilize wave interference and feedback to confine light in all three dimensions. Depending on the feedback mechanism, resonators can support either standing-or traveling-wave modes. Over the years, the distinction between these two different types of modes has become so prevalent that nowadays it is one of the main characteristics for classifying optical resonators. Here, we show that an intermediate link between these two rather different groups exists. In particular, we introduce a new class of photonic resonators that supports a hybrid optical mode, i.e. at one location along the resonator the electromagnetic fields associated with …


Arrayed Waveguide Lens For Beam Steering, Mostafa Honari-Latifpour, Ali Binaie, Mohammad Amin Eftekhar, Nicholas Madamopoulos, Mohammad-Ali Miri Aug 2022

Arrayed Waveguide Lens For Beam Steering, Mostafa Honari-Latifpour, Ali Binaie, Mohammad Amin Eftekhar, Nicholas Madamopoulos, Mohammad-Ali Miri

Publications and Research

Integrated planar lenses are critical components for analog optical information processing that enable a wide range of applications including beam steering. Conventional planar lenses require gradient index control which makes their on-chip realization challenging. Here, we introduce a new approach for beam steering by designing an array of coupled waveguides with segmented tails that allow for simultaneously achieving planar lensing and off-chip radiation. The proposed arrayed waveguide lens is built on engineering the evanescent coupling between adjacent channels to realize a photonic lattice with an equi-distant ladder of propagation constants that emulates the continuous parabolic index profile. Through coupled-mode analysis …