Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

PDF

Series

2020

Institution
Keyword
Publication

Articles 1 - 30 of 85

Full-Text Articles in Physics

Search For Bottom-Type, Vectorlike Quark Pair Production In A Fully Hadronic Final State In Proton-Proton Collisions At S =13 Tev, The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan, S Johnson Dec 2020

Search For Bottom-Type, Vectorlike Quark Pair Production In A Fully Hadronic Final State In Proton-Proton Collisions At S =13 Tev, The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan, S Johnson

Physics and Engineering Faculty Publications

A search is described for the production of a pair of bottom-type vectorlike quarks (VLQs), each decaying into a b or b¯ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb-1. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in …


Conditional Generative Adversarial Network Demosaicing Strategy For Division Of Focal Plane Polarimeters, Garrett Sargent, Bradley M. Ratliff, Vijayan K. Asari Dec 2020

Conditional Generative Adversarial Network Demosaicing Strategy For Division Of Focal Plane Polarimeters, Garrett Sargent, Bradley M. Ratliff, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

Division of focal plane (DoFP), or integrated microgrid polarimeters, typically consist of a 2 × 2 mosaic of linear polarization filters overlaid upon a focal plane array sensor and obtain temporally synchronized polarized intensity measurements across a scene, similar in concept to a Bayer color filter array camera. However, the resulting estimated polarimetric images suffer a loss in resolution and can be plagued by aliasing due to the spatially-modulated microgrid measurement strategy. Demosaicing strategies have been proposed that attempt to minimize these effects, but result in some level of residual artifacts. In this work we propose a conditional generative adversarial …


Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès Dec 2020

Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès

Kirill Belashchenko Publications

Spintronic structures are extensively investigated for their spin-orbit torque properties, required for magnetic commutation functionalities. Current progress in these materials is dependent on the interface engineering for the optimization of spin transmission. Here, we advance the analysis of ultrafast spin-charge conversion phenomena at ferromagnetic-Transition metal interfaces due to their inverse spin-Hall effect properties. In particular, the intrinsic inverse spin-Hall effect of Pt-based systems and extrinsic inverse spin-Hall effect of Au:W and Au:Ta in NiFe/Au:(W,Ta) bilayers are investigated. The spin-charge conversion is probed by complementary techniques-ultrafast THz time-domain spectroscopy in the dynamic regime for THz pulse emission and ferromagnetic resonance spin-pumping …


Polarization-Selective Modulation Of Supercavity Resonances Originating From Bound States In The Continuum, Chan Kyaw, Riad Yahiaoui, Joshua A. Burrow, Viet Tran, Kyron Keelen, Wesley Sims, Eddie C. Red, Willie S. Rockward, Mikkel A. Thomas, Andrew M. Sarangan, Imad Agha, Thomas A. Searles Dec 2020

Polarization-Selective Modulation Of Supercavity Resonances Originating From Bound States In The Continuum, Chan Kyaw, Riad Yahiaoui, Joshua A. Burrow, Viet Tran, Kyron Keelen, Wesley Sims, Eddie C. Red, Willie S. Rockward, Mikkel A. Thomas, Andrew M. Sarangan, Imad Agha, Thomas A. Searles

Electro-Optics and Photonics Faculty Publications

Bound states in the continuum (BICs) are widely studied for their ability to confine light, produce sharp resonances for sensing applications and serve as avenues for lasing action with topological characteristics. Primarily, the formation of BICs in periodic photonic band gap structures are driven by symmetry incompatibility; structural manipulation or variation of incidence angle from incoming light. In this work, we report two modalities for driving the formation of BICs in terahertz metasurfaces. At normal incidence, we experimentally confirm polarization driven symmetry-protected BICs by the variation of the linear polarization state of light. In addition, we demonstrate through strong coupling …


Transfer-To-Transfer Learning Approach For Computer Aided Detection Of Covid-19 In Chest Radiographs, Barath Narayanan Narayanan, Russell C. Hardie, Vignesh Krishnaraja, Christina Karam, Venkata Salini Priyamvada Davuluru Dec 2020

Transfer-To-Transfer Learning Approach For Computer Aided Detection Of Covid-19 In Chest Radiographs, Barath Narayanan Narayanan, Russell C. Hardie, Vignesh Krishnaraja, Christina Karam, Venkata Salini Priyamvada Davuluru

Electrical and Computer Engineering Faculty Publications

The coronavirus disease 2019 (COVID-19) global pandemic has severely impacted lives across the globe. Respiratory disorders in COVID-19 patients are caused by lung opacities similar to viral pneumonia. A Computer-Aided Detection (CAD) system for the detection of COVID-19 using chest radiographs would provide a second opinion for radiologists. For this research, we utilize publicly available datasets that have been marked by radiologists into two-classes (COVID-19 and non-COVID-19). We address the class imbalance problem associated with the training dataset by proposing a novel transfer-to-transfer learning approach, where we break a highly imbalanced training dataset into a group of balanced mini-sets and …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Atmospheric Turbulence Study With Deep Machine Learning Of Intensity Scintillation Patterns, Artem V. Vorontsov, Mikhail A. Vorontsov, Grigorii A. Fillimonov, Ernst Polnau Nov 2020

Atmospheric Turbulence Study With Deep Machine Learning Of Intensity Scintillation Patterns, Artem V. Vorontsov, Mikhail A. Vorontsov, Grigorii A. Fillimonov, Ernst Polnau

Electro-Optics and Photonics Faculty Publications

A new paradigm for machine learning-inspired atmospheric turbulence sensing is developed and applied to predict the atmospheric turbulence refractive index structure parameter using deep neural network (DNN)-based processing of short-exposure laser beam intensity scintillation patterns obtained with both: experimental measurement trials conducted over a 7 km propagation path, and imitation of these trials using wave-optics numerical simulations. The developed DNN model was optimized and evaluated in a set of machine learning experiments. The results obtained demonstrate both good accuracy and high temporal resolution in sensing. The machine learning approach was also employed to challenge the validity of several eminent atmospheric …


Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić Nov 2020

Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić

Kirill Belashchenko Publications

Gate-tunable spin-dependent properties could be induced in graphene at room temperature through the magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene (Gr). We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to …


Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman Nov 2020

Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman

Chemistry Faculty Publications

This Special Issue provides the first literature collection focused on the development and implementation of unmanned aircraft systems (UAS) and their integration with sensors for atmospheric measurements on Earth. The research covered in the Special Issue combines chemical, physical, and meteorological measurements performed in field campaigns as well as conceptual and laboratory work. Useful examples for the development of platforms and autonomous systems for environmental studies are provided, which demonstrate how careful the operation of sensors aboard UAS must be to gather information for remote sensing in the atmosphere. The work serves as a key collection of articles to introduce …


Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller Nov 2020

Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller

Kirill Belashchenko Publications

We have probed directly the temperature and magnetic field dependence of pinned uncompensated magnetization at the interface of antiferromagnetic FeF2 with Cu, using FeF2-Cu-Co spin valves. Electrons polarized by the Co layer are scattered by the pinned uncompensated moments at the FeF2-Cu interface giving rise to giant magnetoresistance. We determined the direction and magnitude of the pinned uncompensated magnetization at different magnetic fields and temperatures using the angular dependencies of resistance. The strong FeF2 anisotropy pins the uncompensated magnetization along the easy axis independent of the cooling field orientation. Most interestingly, magnetic fields as …


Organic-Inorganic Halide Perovskite Nanocrystals And Solar Cells, Rui Guo Nov 2020

Organic-Inorganic Halide Perovskite Nanocrystals And Solar Cells, Rui Guo

FIU Electronic Theses and Dissertations

A great challenge facing humanity in the 21st century is finding inexhaustible and inexpensive energy sources to power the planet. Renewable energies are the best solutions because of their abundance, diversity, and pollution-free emission. Solar energy is the cleanest and most abundant renewable energy source available. In the continuing quest for efficient and low-cost solar cells, perovskite solar cells (PSCs) have emerged as a potential replacement for silicon solar cells. Since 2009, the record efficiencies of PSCs have been skyrocketing from 3.8 % to 25.2 % and are now approaching the theoretical limit. Along with the three-dimensional perovskites used …


Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova Nov 2020

Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova

Articles

In this paper a Vernier effect based sensor is analyzed and demonstrated experimentally in a tri-microfiber coupler (Tri-MFC) and polarization-maintaining fiber (PMF) loop interferometer (Tri-MFC-PMF) to provide ultrasensitive refractive index and temperature sensing. The main novelty of this work is an analysis of parameters of the proposed Tri-MFC-PMF with the objective of determining the conditions leading to a strong Vernier effect. It has been identified by simulation that the Vernier effect is a primary factor in the design of Tri-MFC-PMF loop sensing structure for sensitivity enhancement. It is furthermore demonstrated experimentally that enhancing the visibility of the Vernier spectrum in …


Strain And Stress Relationships For Optical Phonon Modes In Monoclinic Crystals With Β-Ga2O3 As An Example, Rafal Korlacki, Megan Stokey, Alyssa Lynn Mock, Sean Knight, Alexis Papamichail, Vanya Darakchieva, Mathias Schubert Nov 2020

Strain And Stress Relationships For Optical Phonon Modes In Monoclinic Crystals With Β-Ga2O3 As An Example, Rafal Korlacki, Megan Stokey, Alyssa Lynn Mock, Sean Knight, Alexis Papamichail, Vanya Darakchieva, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

Strain-stress relationships for physical properties are of interest for heteroepitaxial material systems, where strain and stress are inherent due to thermal expansion and lattice mismatch. We report linear perturbation theory strain and stress relationships for optical phonon modes in monoclinic crystals for strain and stress situations which maintain the monoclinic symmetry of the crystal. By using symmetry group analysis and phonon frequencies obtained under various deformation scenarios from density-functional perturbation theory calculations on β-Ga2O3, we obtain four strain and four stress potential parameters for each phonon mode. We demonstrate that these parameters are sufficient to …


Reinvestigation Of The Intrinsic Magnetic Properties Of (Fe1-Xcox)2b Alloys And Crystallization Behavior Of Ribbons, Tej Nath Lamichhane, Olena Palasyuk, Vladimir P. Antropov, Ivan A. Zhuravlev, Kirill Belashchenko, Ikenna C. Nlebedim, Kevin W. Dennis, Anton Jesche, Matthew J. Kramer, Sergey L. Bud'ko, R. William Mccallum, Paul C. Canfield, Valentin Taufour Nov 2020

Reinvestigation Of The Intrinsic Magnetic Properties Of (Fe1-Xcox)2b Alloys And Crystallization Behavior Of Ribbons, Tej Nath Lamichhane, Olena Palasyuk, Vladimir P. Antropov, Ivan A. Zhuravlev, Kirill Belashchenko, Ikenna C. Nlebedim, Kevin W. Dennis, Anton Jesche, Matthew J. Kramer, Sergey L. Bud'ko, R. William Mccallum, Paul C. Canfield, Valentin Taufour

Kirill Belashchenko Publications

New determination of the magnetic anisotropy from single crystals of (Fe1-xCox)2B alloys are presented. The anomalous temperature dependence of the anisotropy constant is discussed using the standard Callen-Callen theory, which is shown to be insufficient to explain the experimental results. A more material specific study using first-principles calculations with disordered moments approach gives a much more consistent interpretation of the experimental data. Since the intrinsic properties of the alloys with x=0.3-0.35 are promising for permanent magnets applications, initial investigation of the extrinsic properties are described, in particular the crystallization of melt spun ribbons with Cu, Al, …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Comparative Study Of Silk-Based Magnetic Materials: Effect Of Magnetic Particle Types On The Protein Structure And Biomaterial Properties., Ye Xue, Samuel Lofland, Xiao Hu Oct 2020

Comparative Study Of Silk-Based Magnetic Materials: Effect Of Magnetic Particle Types On The Protein Structure And Biomaterial Properties., Ye Xue, Samuel Lofland, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

This study investigates combining the good biocompatibility and flexibility of silk protein with three types of widely used magnetic nanoparticles to comparatively explore their structures, properties and potential applications in the sustainability and biomaterial fields. The secondary structure of silk protein was quantitatively studied by infrared spectroscopy. It was found that magnetite (Fe3O4) and barium hexaferrite (BaFe12O19) can prohibit β-sheet crystal due to strong coordination bonding between Fe3+ ions and carboxylate ions on silk fibroin chains where cobalt particles showed minimal effect. This was confirmed by thermal analysis, where a high temperature degradation peak was found above 640 °C in …


Sound Vortex Diffraction Via Topological Charge In Phase Gradient Metagratings, Yangyang Fu, Chen Shen, Xiaohui Zhu, Junfei Li, Youwen Liu, Steven A. Crummer Oct 2020

Sound Vortex Diffraction Via Topological Charge In Phase Gradient Metagratings, Yangyang Fu, Chen Shen, Xiaohui Zhu, Junfei Li, Youwen Liu, Steven A. Crummer

Henry M. Rowan College of Engineering Faculty Scholarship

Wave fields with orbital angular momentum (OAM) have been widely investigated in metasurfaces. By engineering acoustic metasurfaces with phase gradient elements, phase twisting is commonly used to obtain acoustic OAM. However, it has limited ability to manipulate sound vortices, and a more powerful mechanism for sound vortex manipulation is strongly desired. Here, we propose the diffraction mechanism to manipulate sound vortices in a cylindrical waveguide with phase gradient metagratings (PGMs). A sound vortex diffraction law is theoretically revealed based on the generalized conservation principle of topological charge. This diffraction law can explain and predict the complicated diffraction phenomena of sound …


Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew Sep 2020

Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve …


Divergence Of The Dielectric Constant In Ultrathin Granular Metal Films Near The Percolation Threshold, H. Bakkali, E. Blanco, Samuel Lofland, M. Dominguez Aug 2020

Divergence Of The Dielectric Constant In Ultrathin Granular Metal Films Near The Percolation Threshold, H. Bakkali, E. Blanco, Samuel Lofland, M. Dominguez

Faculty Scholarship for the College of Science & Mathematics

We report on the electronic and optical properties of ultrathin granular films. We demonstrate that the static dielectric constant increases with thickness in the dielectric regime and diverges at the critical thickness, as predicted by classical percolation theory. However, for thicker samples, the dc conductivity does not obey scaling laws due to the presence of tunneling conduction. In this region the dielectric constant is positive, and the electronic transport is not metallic but can be described by Jonscher's universal power law, even though there is a Drude-like response indicating the presence of free charge carriers. Only for thicker films when …


In Situ Electric-Field Study Of Surface Effects In Domain Engineered Pb(In1/2nb1/2)O3-Pb(Mg1/3nb2/3)O3-Pbtio3 Relaxor Crystals By Grazing Incidence Diffraction, Markys G. Cain, Margo Staruch, Paul Thompson, Christopher Lucas, Didier Wermeille, Yves Kayser, Burkhard Beckhoff, Samuel Lofland, Peter Finkel Aug 2020

In Situ Electric-Field Study Of Surface Effects In Domain Engineered Pb(In1/2nb1/2)O3-Pb(Mg1/3nb2/3)O3-Pbtio3 Relaxor Crystals By Grazing Incidence Diffraction, Markys G. Cain, Margo Staruch, Paul Thompson, Christopher Lucas, Didier Wermeille, Yves Kayser, Burkhard Beckhoff, Samuel Lofland, Peter Finkel

Faculty Scholarship for the College of Science & Mathematics

In this work, we present a grazing incidence X-ray diffraction study of the surface of a 0.24Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) [011] poled rhombohedral single crystal. The near surface microstructure (the top several tens to hundreds of unit cells) was measured in situ under an applied electric field. The strains calculated from the change in lattice parameters have been compared to the macroscopic strain measured with a strain gauge affixed to the sample surface. The depth dependence of the electrostrain at the crystal surface was investigated as a function of temperature. The analysis revealed hidden sweet spots featuring unusually high strains that were …


Artificial Neural Network Discovery Of A Switchable Metasurface Reflector, J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, M. S. Mills Aug 2020

Artificial Neural Network Discovery Of A Switchable Metasurface Reflector, J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, M. S. Mills

Electro-Optics and Photonics Faculty Publications

Optical materials engineered to dynamically and selectively manipulate electromag- netic waves are essential to the future of modern optical systems. In this paper, we simulate various metasurface configurations consisting of periodic 1D bars or 2D pillars made of the ternary phase change material Ge2Sb2Te5 (GST). Dynamic switching behavior in reflectance is exploited due to a drastic refractive index change between the crystalline and amorphous states of GST. Selectivity in the reflection and transmission spectra is manipulated by tailoring the geometrical parameters of the metasurface. Due to the immense number of possible metasurface configurations, we train deep neural networks capable of …


Elmer Fem-Dakota: A Unified Open-Source Computational Framework For Electromagnetics And Data Analytics, Anjali Sandip Aug 2020

Elmer Fem-Dakota: A Unified Open-Source Computational Framework For Electromagnetics And Data Analytics, Anjali Sandip

Mechanical Engineering Faculty Publications

Open-source electromagnetic design software, Elmer FEM, was interfaced with data analytics toolkit, Dakota. Furthermore, the coupled software was validated against a benchmark test. The interface developed provides a unified open-source computational framework for electromagnetics and data analytics. Its key features include uncertainty quantification, surrogate modelling and parameter studies. This framework enables a richer understanding of model predictions to better design electric machines in a time sensitive manner.


A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings Aug 2020

A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000-1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated …


Brillouin Zone Center Phonon Modes In Znga2O4, Megan Stokey, Rafal Korlacki, Sean Knight, Matthew J. Hilfiker, Zbigniew Galazka, Klaus Irmscher, Vanya Darakchieva, Mathias Schubert Aug 2020

Brillouin Zone Center Phonon Modes In Znga2O4, Megan Stokey, Rafal Korlacki, Sean Knight, Matthew J. Hilfiker, Zbigniew Galazka, Klaus Irmscher, Vanya Darakchieva, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

Infrared-active lattice mode properties of melt-grown high-quality single bulk crystals of ZnGa2O4 are investigated by combined spectroscopic ellipsometry and density functional theory computation analysis. The normal spinel structure crystals are measured by spectroscopic ellipsometry at room temperature in the range of 100 cm–1–1200 cm–1. The complex-valued dielectric function is determined from a wavenumber-by-wavenumber approach, which is then analyzed by the four-parameter semi-quantum model dielectric function approach augmented by impurity mode contributions. We determine four infrared-active transverse and longitudinal optical mode pairs, five localized impurity mode pairs, and the high frequency dielectric constant. All …


Designing A Reactor Chamber For Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn Merrill, Bingjie Zhang, Jerry Larue Aug 2020

Designing A Reactor Chamber For Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn Merrill, Bingjie Zhang, Jerry Larue

SURF Posters and Papers

Catalysis provides pathways for efficient and selective chemical reactions by lowering the energy barriers for desired products. Gold nanoparticles (AuNPs) show excellent promise as plasmonic catalysts. Plasmonic materials have localized surface plasmon resonances, oscillations of the electron bath at the surface of a nanoparticle, that generate energetically intense electric fields which rapidly decay into energetically excited electrons. The excited electrons have the potential to destabilize atoms strongly bound to the catalysts through occupation of antibonding orbitals. Tuning the antibonding orbitals to make them accessible for occupancy by electrons is achieved by coating the AuNP in a thin layer of another …


Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight Aug 2020

Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this dissertation, optical Hall effect (OHE) measurements are used to determine the free charge carrier properties of important two-dimensional materials and monoclinic oxides. Two-dimensional material systems have proven useful in high-frequency electronic devices due to their unique properties, such as high mobility, which arise from their two-dimensional nature. Monoclinic oxides exhibit many desirable characteristics, for example low-crystal symmetry which could lead to anisotropic carrier properties. Here, single-crystal monoclinic gallium oxide, an AlInN/GaN-based high-electron-mobility transistor (HEMT) structure, and epitaxial graphene are studied as examples. To characterize these material systems, the OHE measurement technique is employed. The OHE is a physical …


Adaptive Spline Fitting With Particle Swarm Optimization, Soumya Mohanty, Ethan Fahnestock Aug 2020

Adaptive Spline Fitting With Particle Swarm Optimization, Soumya Mohanty, Ethan Fahnestock

Physics and Astronomy Faculty Publications and Presentations

In fitting data with a spline, finding the optimal placement of knots can significantly improve the quality of the fit. However, the challenging high-dimensional and non-convex optimization problem associated with completely free knot placement has been a major roadblock in using this approach. We present a method that uses particle swarm optimization (PSO) combined with model selection to address this challenge. The problem of overfitting due to knot clustering that accompanies free knot placement is mitigated in this method by explicit regularization, resulting in a significantly improved performance on highly noisy data. The principal design choices available in the method …


Protein And Polysaccharide-Based Fiber Materials Generated From Ionic Liquids: A Review., Christopher R Gough, Ashley Rivera-Galletti, Darrel A Cowan, David Salas-De La Cruz, Xiao Hu Jul 2020

Protein And Polysaccharide-Based Fiber Materials Generated From Ionic Liquids: A Review., Christopher R Gough, Ashley Rivera-Galletti, Darrel A Cowan, David Salas-De La Cruz, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

Natural biomacromolecules such as structural proteins and polysaccharides are composed of the basic building blocks of life: amino acids and carbohydrates. Understanding their molecular structure, self-assembly and interaction in solvents such as ionic liquids (ILs) is critical for unleashing a flora of new materials, revolutionizing the way we fabricate multi-structural and multi-functional systems with tunable physicochemical properties. Ionic liquids are superior to organic solvents because they do not produce unwanted by-products and are considered green substitutes because of their reusability. In addition, they will significantly improve the miscibility of biopolymers with other materials while maintaining the mechanical properties of the …


Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan Jul 2020

Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan

Faculty Publications

A portable LIBS device was used for rapid elemental impurity analysis of plutonium alloys. This device demonstrates the potential for fast, accurate in-situ chemical analysis and could significantly reduce the fabrication time of plutonium alloys.


The Impact Of Composition And Morphology On Ionic Conductivity Of Silk/Cellulose Bio-Composites Fabricated From Ionic Liquid And Varying Percentages Of Coagulation Agents., Bailey Blessing, Cory Trout, Abneris Morales, Karleena Rybacki, Stacy A Love, Guillaume Lamoureux, Sean M O'Malley, Xiao Hu, David Salas-De La Cruz Jun 2020

The Impact Of Composition And Morphology On Ionic Conductivity Of Silk/Cellulose Bio-Composites Fabricated From Ionic Liquid And Varying Percentages Of Coagulation Agents., Bailey Blessing, Cory Trout, Abneris Morales, Karleena Rybacki, Stacy A Love, Guillaume Lamoureux, Sean M O'Malley, Xiao Hu, David Salas-De La Cruz

Faculty Scholarship for the College of Science & Mathematics

Blended biocomposites created from the electrostatic and hydrophobic interactions between polysaccharides and structural proteins exhibit useful and unique properties. However, engineering these biopolymers into applicable forms is challenging due to the coupling of the material’s physicochemical properties to its morphology, and the undertaking that comes with controlling this. In this particular study, numerous properties of the Bombyx mori silk and microcrystalline cellulose biocomposites blended using ionic liquid and regenerated with various coagulation agents were investigated. Specifically, the relationship between the composition of polysaccharide-protein bio-electrolyte membranes and the resulting morphology and ionic conductivity is explored using numerous characterization techniques, including scanning …