Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

PDF

Series

2020

Institution
Keyword
Publication

Articles 31 - 60 of 85

Full-Text Articles in Physics

Feasibility Of Electric Field Assisted Clogging Reduction In Cold Gas Spraying Nozzle, Hendric Tronsson Jun 2020

Feasibility Of Electric Field Assisted Clogging Reduction In Cold Gas Spraying Nozzle, Hendric Tronsson

ENGS 88 Honors Thesis (AB Students)

The relatively novel cold spraying process expands its range of applications constantly. In order to continue this trend, this process still has various hurdles that need to be overcome such as clogging. Clogging within the cold gas spraying process causes porous coatings with less material properties and lower durability; a solution is needed in order to reduce the clogging and so expand the cold gas spraying applications. This study aimed to explore the feasibility of using an electric field to reduce clogging. To do so a simplified channel was used to simulate charged particle trajectory shifts under the influence of …


Recent Advances In Electrospun Sustainable Composites For Biomedical, Environmental, Energy, And Packaging Applications., Hao Liu, Christopher R Gough, Qianqian Deng, Zhenggui Gu, Fang Wang, Xiao Hu Jun 2020

Recent Advances In Electrospun Sustainable Composites For Biomedical, Environmental, Energy, And Packaging Applications., Hao Liu, Christopher R Gough, Qianqian Deng, Zhenggui Gu, Fang Wang, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

Electrospinning has gained constant enthusiasm and wide interest as a novel sustainable material processing technique due to its ease of operation and wide adaptability for fabricating eco-friendly fibers on a nanoscale. In addition, the device working parameters, spinning solution properties, and the environmental factors can have a significant effect on the fibers' morphology during electrospinning. This review summarizes the newly developed principles and influence factors for electrospinning technology in the past five years, including these factors' interactions with the electrospinning mechanism as well as its most recent applications of electrospun natural or sustainable composite materials in biology, environmental protection, energy, …


Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal Jun 2020

Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal

AFIT Patents

Calibration of a radiometry system uses a readout circuit of a photo-detector to provide first and second measurements collected over first and second integration times, respectively, where the first and second measurements are related to a photonic input to the photo-detector by a gain and a bias. First mean and variance values are computed for a plurality of first measurements. Second mean and variance values are computed for a plurality of second measurements. The gain and bias are determined from the first and second mean values and the first and second variance values without the use of a calibrated source. …


Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey Jun 2020

Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey

Publications and Research

La(Fe,Si)13–based compounds are considered to be very promising magnetocaloric materials for magnetic refrigeration applications. Many studies have focused on this material family but only in bulk form. In this paper we report on the fabrication of thick films of La(Fe,Si)13, both with and without post-hydriding. These films exhibit magnetic and structural properties comparable to bulk materials. We also observe that the ferromagnetic phase transition has a negative thermal hysteresis, a phenomenon not previously found in this material but which may have its origins in the availability of a strain energy reservoir, as in the cases of …


Semi-Lagrangian Implicit Bhatnagar-Gross-Krook Collision Model For The Finite-Volume Discrete Boltzmann Method, Leitao Chen, Sauro Succi, Xiaofeng Cai, Laura Schaefer Jun 2020

Semi-Lagrangian Implicit Bhatnagar-Gross-Krook Collision Model For The Finite-Volume Discrete Boltzmann Method, Leitao Chen, Sauro Succi, Xiaofeng Cai, Laura Schaefer

Publications

In order to increase the accuracy of temporal solutions, reduce the computational cost of time marching, and improve the stability associated with collisions for the finite-volume discrete Boltzmann method, an advanced implicit Bhatnagar-Gross-Krook (BGK) collision model using a semi-Lagrangian approach is proposed in this paper. Unlike existing models, in which the implicit BGK collision is resolved either by a temporal extrapolation or by a variable transformation, the proposed model removes the implicitness by tracing the particle distribution functions (PDFs) back in time along their characteristic paths during the collision process. An interpolation scheme is needed to evaluate the PDFs at …


Applied-Force Oscillations In Avalanche Dynamics, Louis W. Mcfaul, Gregory Sparks, Jordan Sickle, Jonathan T. Uhl, Wendelin J. Wright, Robert Maass, Karin A. Dahmen May 2020

Applied-Force Oscillations In Avalanche Dynamics, Louis W. Mcfaul, Gregory Sparks, Jordan Sickle, Jonathan T. Uhl, Wendelin J. Wright, Robert Maass, Karin A. Dahmen

Faculty Journal Articles

Until now most studies of discrete plasticity have focused on systems that are assumed to be driven by a monotonically increasing force; in many real systems, however, the driving force includes damped oscillations or oscillations induced by the propagation of discrete events or “slip avalanches.” In both cases, these oscillations may obscure the true dynamics. Here we effectively consider both cases by investigating the effects of damped oscillations in the external driving force on avalanche dynamics. We compare model simulations of slip avalanches under mean-field dynamics with observations in slip-avalanche experiments on slowly compressed micrometer-sized Au specimens using open-loop force …


Electrospun Silk-Boron Nitride Nanofibers With Tunable Structure And Properties., Ye Xue, Xiao Hu May 2020

Electrospun Silk-Boron Nitride Nanofibers With Tunable Structure And Properties., Ye Xue, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

In this study, hexagonal boron nitride (h-BN) nanosheets and Bombyx mori silk fibroin (SF) proteins were combined and electrospun into BNSF nanofibers with different ratios. It was found that the surface morphology and crosslinking density of the nanofibers can be tuned through the mixing ratios. Fourier transform infrared spectroscopy study showed that pure SF electrospun fibers were dominated by random coils and they gradually became α-helical structures with increasing h-BN nanosheet content, which indicates that the structure of the nanofiber material is tunable. Thermal stability of electrospun BNSF nanofibers were largely improved by the good thermal stability of BN, and …


Automating 35mm Photographic Film Digitization: X-Y Table Capture System Design And Assessment, Michael J. Bennett May 2020

Automating 35mm Photographic Film Digitization: X-Y Table Capture System Design And Assessment, Michael J. Bennett

Published Works

35mm still image formats are some of the most abundant photographic film types in cultural heritage collections. However, their special handling needs coupled with high resolution digital capture requirements have traditionally posed logistical constraints with regard to the formats’ digitization at scale. Through the use of a programmable X-Y table camera capture system, both slide and strip 35mm photographic film can be digitized in an automated fashion following Federal Agencies Digitization Guidelines (FADGI).


A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin May 2020

A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin

Faculty Publications

In this work, the behavior of dilute interstitial helium in W–Mo binary alloys was explored through the application of a first principles-informed neural network (NN) in order to study the early stages of helium-induced damage and inform the design of next generation materials for fusion reactors. The neural network (NN) was trained using a database of 120 density functional theory (DFT) calculations on the alloy. The DFT database of computed solution energies showed a linear dependence on the composition of the first nearest neighbor metallic shell. This NN was then employed in a kinetic Monte Carlo simulation, which took into …


Optically Pumped Spin Polarization As A Probe Of Many-Body Thermalization, Daniela Pagliero, Pablo R. Zangara, Jacob Henshaw, Ashok Ajoy, Rodolfo H. Acosta, Jeffrey A. Reimer, Alexander Pines, Carlos A. Meriles May 2020

Optically Pumped Spin Polarization As A Probe Of Many-Body Thermalization, Daniela Pagliero, Pablo R. Zangara, Jacob Henshaw, Ashok Ajoy, Rodolfo H. Acosta, Jeffrey A. Reimer, Alexander Pines, Carlos A. Meriles

Publications and Research

Disorder and many body interactions are known to impact transport and thermalization in competing ways, with the dominance of one or the other giving rise to fundamentally different dynamical phases. Here we investigate the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers. We focus on low-abundance, strongly hyperfine-coupled nuclei, whose role in the polarization transport we expose through the integrated impact of variable radio-frequency excitation on the observable bulk 13C magnetic resonance signal. Unexpectedly, we find good thermal contact throughout the nuclear spin bath, …


Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello May 2020

Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello

Honors Scholar Theses

The production of soot is omnipresent in society today. Soot is the product of many of the combustion processes that provide the bulk of the usable energy throughout the world. Furthermore, soot particulate poses a great danger to both the environment and all forms of life on Earth. It has proven to pollute ecosystems, foster health problems for human beings, and degrade air quality [1].

These dangers make studying and understanding soot particulate paramount for improving the quality of life. Thus, this study introduces a new flame configuration for studying soot inception. Presently, various common flame configurations have been found …


Integrated Photonic Device, Brittney Kuhn May 2020

Integrated Photonic Device, Brittney Kuhn

Student Scholar Symposium Abstracts and Posters

In computer mediated communication networks, information is typically encoded optically to transmit signals over long distances. At a network node, the optical signal is transformed into the electrical domain, processed electronically, and transformed back to an optical state to reach its destination. Transitioning between optical and electrical encoding of the signal is a potential security weak point, especially for quantum communication links. If information can remain in one state as it travels through the network, then security breaches can be detected and dealt with more easily. Furthermore, keeping the information in one state can reduce power consumption in the network. …


Ensemble Malware Classification System Using Deep Neural Networks, Barath Narayanan Narayanan, Venkata Salini Priyamvada Davuluru Apr 2020

Ensemble Malware Classification System Using Deep Neural Networks, Barath Narayanan Narayanan, Venkata Salini Priyamvada Davuluru

Electrical and Computer Engineering Faculty Publications

With the advancement of technology, there is a growing need of classifying malware programs that could potentially harm any computer system and/or smaller devices. In this research, an ensemble classification system comprising convolutional and recurrent neural networks is proposed to distinguish malware programs. Microsoft's Malware Classification Challenge (BIG 2015) dataset with nine distinct classes is utilized for this study. This dataset contains an assembly file and a compiled file for each malware program. Compiled files are visualized as images and are classified using Convolutional Neural Networks (CNNs). Assembly files consist of machine language opcodes that are distinguished among classes using …


On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young Apr 2020

On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young

Physics & Astronomy Faculty Research

The efficient modulation and control of ultrafast signals on-chip is of central importance in terahertz (THz) communications and a promis- ing route toward sub-diffraction limit THz spectroscopy. Two-dimensional (2D) materials may provide a platform for these endeavors. We explore this potential, integrating high-quality graphene p–n junctions within two types of planar transmission line circuits to modulate and emit picosecond pulses. In a coplanar strip line geometry, we demonstrate the electrical modulation of THz signal transmission by 95%. In a Goubau waveguide geometry, we achieve complete gate-tunable control over THz emission from a photoexcited graphene junction. These studies inform the development …


Subsurface Analytics: Contribution Of Artificial Intelligence And Machine Learning To Reservoir Engineering, Reservoir Modeling, And Reservoir Management, Shahab D. Mohaghegh Apr 2020

Subsurface Analytics: Contribution Of Artificial Intelligence And Machine Learning To Reservoir Engineering, Reservoir Modeling, And Reservoir Management, Shahab D. Mohaghegh

Faculty & Staff Scholarship

Subsurface Analytics is a new technology that changes the way reservoir simulation and modeling is performed. Instead of starting with the construction of mathematical equations to model the physics of the fluid flow through porous media and then modification of the geological models in order to achieve history match, Subsurface Analytics that is a completely AI-based reservoir simulation and modeling technology takes a completely different approach. In AI-based reservoir modeling, field measurements form the foundation of the reservoir model. Using data-driven, pattern recognition technologies; the physics of the fluid flow through porous media is modeled through discovering the best, most …


Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde Apr 2020

Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde

Kirill Belashchenko Publications

This paper summarises the theory and functionality behind Questaal, an open-source suite of codes for calculating the electronic structure and related properties of materials from first principles. The formalism of the linearised muffin-tin orbital (LMTO) method is revisited in detail and developed further by the introduction of short-ranged tight-binding basis functions for full-potential calculations. The LMTO method is presented in both Green's function and wave function formulations for bulk and layered systems. The suite's full-potential LMTO code uses a sophisticated basis and augmentation method that allows an efficient and precise solution to the band problem at different levels of theory, …


Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides Apr 2020

Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides

Faculty Publications

We present a novel light detection and ranging (LiDAR) polarimeter that enables measurement of 12 of 16 sample Mueller matrix elements in a single, 10 ns pulse. The new polarization state generator (PSG) leverages Kerr phase modulation in a birefringent optical fiber, creating a probe pulse characterized by temporally varying polarization. Theoretical expressions for the Polarization State Generator (PSG) Stokes vector are derived for birefringent walk-off and no walk-off and incorporated into a time-dependent polarimeter signal model employing multiple polarization state analyzers (PSA). Polarimeter modeling compares the Kerr effect and electro-optic phase modulator–based PSG using a single Polarization State Analyzer …


Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles Apr 2020

Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR) is used to experimentally determine the (0/−) level of the Mg acceptor in an Mg-doped β-Ga2O3 crystal. Our results place this level 0.65 eV (±0.05 eV) above the valence band, a position closer to the valence band than the predictions of several recent computational studies. The crystal used in this investigation was grown by the Czochralski method and contains large concentrations of Mg acceptors and Ir donors, as well as a small concentration of Fe ions and an even smaller concentration of Cr ions. Below room temperature, illumination with 325 nm laser light …


Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse Mar 2020

Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse

Publications and Research

A major ambition of systems science is to uncover the building blocks of any biological network to decipher how cellular function emerges from their interactions. Here, we introduce a graph representation of the information flow in these networks as a set of input trees, one for each node, which contains all pathways along which information can be transmitted in the network. In this representation, we find remarkable symmetries in the input trees that deconstruct the network into functional building blocks called fibers. Nodes in a fiber have isomorphic input trees and thus process equivalent dynamics and synchronize their activity. Each …


Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli Mar 2020

Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli

Publications and Research

In electrocoalescence, an electric field is applied to a dispersion of conducting water droplets in a poorly conducting oil to force the droplets to merge in the direction of the field. Electrocoalescence is used in petroleum refining to separate water from crude oil and in droplet-based microfluidics to combine droplets of water in oil and to break emulsions. Using a microfluidic design to generate a two-dimensional (2D) emulsion, we demonstrate that electrocoalescence in an opaque crude oil can be visualized with optical microscopy and studied on an individual droplet basis in a chamber whose height is small enough to make …


Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos Mar 2020

Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos

Open Educational Resources

Concepts covered in the undergraduate electrical engineering class of electromagnetics


Infrared-Active Phonon Modes In Single-Crystal Thorium Dioxide And Uranium Dioxide, Sean Knight, Rafal Korlacki, Christina Dugan, James C. Petrosky, Alyssa Lynn Mock, Peter A. Dowben, J. Matthew Mann, Martin M. Kimani, Mathias Schubert Mar 2020

Infrared-Active Phonon Modes In Single-Crystal Thorium Dioxide And Uranium Dioxide, Sean Knight, Rafal Korlacki, Christina Dugan, James C. Petrosky, Alyssa Lynn Mock, Peter A. Dowben, J. Matthew Mann, Martin M. Kimani, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

The infrared-active phonon modes, in single-crystal samples of thorium dioxide (ThO2) and uranium dioxide (UO2), were investigated using spectroscopic ellipsometry and compared with density functional theory. Both ThO2 and UO2 are found to have one infrared-active phonon mode pair [consisting of one transverse optic (TO) and one associated longitudinal optic (LO) mode], which is responsible for the dominant features in the ellipsometric data. At room temperature, our results for the mode pair’s resonant frequencies and broadening parameters are comparable with previous reflectance spectroscopy characterizations and density functional theory predictions. For ThO2, our …


Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv Mar 2020

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any genuine electromagnetic partially coherent source (PCS) from correlated, stochastic complex screens. The method described here can be directly implemented on existing spatial-light-modulator-based vector beam generators and can be used in any application which utilizes electromagnetic PCSs. Our method is based on the genuine cross-spectral density matrix criterion. Applying that criterion, we show that stochastic vector field realizations (corresponding to a desired electromagnetic PCS) can be generated by passing correlated Gaussian random numbers through “filters” with space-variant transfer functions. We include step-by-step instructions on how to generate the electromagnetic PCS field realizations. As an …


Effects Of Intrinsic Defects And Alloying With Fe On The Half-Metallicity Of Co2Mnsi, G. G. Baez Flores, Ivan A. Zhuravlev, Kirill Belashchenko Feb 2020

Effects Of Intrinsic Defects And Alloying With Fe On The Half-Metallicity Of Co2Mnsi, G. G. Baez Flores, Ivan A. Zhuravlev, Kirill Belashchenko

Kirill Belashchenko Publications

The electronic structure and half-metallic gap of Co2MnSi in the presence of crystallographic defects, partial Fe substitution for Mn, and thermal spin fluctuations are studied using the coherent potential approximation and the disordered local moment method. In the presence of 5% Co or Mn vacancies the Fermi level shifts down to the minority-spin valence-band maximum. In contrast to NiMnSb, both types of Mn antisite defects in Co2MnSi are strongly exchange coupled to the host magnetization, and thermal spin fluctuations do not strongly affect the half-metallic gap. Partial substitution of Mn by Fe results in considerable changes in the Bloch spectral …


Protein-Polysaccharide Composite Materials: Fabrication And Applications., Elizabeth J Bealer, Shola Onissema-Karimu, Ashley Rivera-Galletti, Maura Francis, Jason Wilkowski, David Salas-De La Cruz, Xiao Hu Feb 2020

Protein-Polysaccharide Composite Materials: Fabrication And Applications., Elizabeth J Bealer, Shola Onissema-Karimu, Ashley Rivera-Galletti, Maura Francis, Jason Wilkowski, David Salas-De La Cruz, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

Protein-polysaccharide composites have been known to show a wide range of applications in biomedical and green chemical fields. These composites have been fabricated into a variety of forms, such as films, fibers, particles, and gels, dependent upon their specific applications. Post treatments of these composites, such as enhancing chemical and physical changes, have been shown to favorably alter their structure and properties, allowing for specificity of medical treatments. Protein-polysaccharide composite materials introduce many opportunities to improve biological functions and contemporary technological functions. Current applications involving the replication of artificial tissues in tissue regeneration, wound therapy, effective drug delivery systems, and …


Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew Feb 2020

Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We present a computational method, termed Wasserstein-induced flux (WIF), to robustly quantify the accuracy of individual localizations within a single-molecule localization microscopy (SMLM) dataset without ground- truth knowledge of the sample. WIF relies on the observation that accurate localizations are stable with respect to an arbitrary computational perturbation. Inspired by optimal transport theory, we measure the stability of individual localizations and develop an efficient optimization algorithm to compute WIF. We demonstrate the advantage of WIF in accurately quantifying imaging artifacts in high-density reconstruction of a tubulin network. WIF represents an advance in quantifying systematic errors with unknown and complex distributions, …


A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew Feb 2020

A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Modulating the polarization of excitation light, resolving the polarization of emitted fluorescence, and point spread function (PSF) engineering have been widely leveraged for measuring the orientation of single molecules. Typically, the performance of these techniques is optimized and quantified using the Cramér-Rao bound (CRB), which describes the best possible measurement variance of an unbiased estimator. However, CRB is a local measure and requires exhaustive sampling across the measurement space to fully characterize measurement precision. We develop a global variance upper bound (VUB) for fast quantification and comparison of orientation measurement techniques. Our VUB tightly bounds the diagonal elements of the …


Dispersion Tuning And Route Reconfiguration Of Acoustic Waves In Valley Topological Phononic Crystals, Zhenhua Tian, Chen Shen, Junfei Li, Eric Reit, Hunter Bachman, Joshua E. S. Socolar, Steven A. Crummer, Tony Jun Huang Feb 2020

Dispersion Tuning And Route Reconfiguration Of Acoustic Waves In Valley Topological Phononic Crystals, Zhenhua Tian, Chen Shen, Junfei Li, Eric Reit, Hunter Bachman, Joshua E. S. Socolar, Steven A. Crummer, Tony Jun Huang

Henry M. Rowan College of Engineering Faculty Scholarship

The valley degree of freedom in crystals offers great potential for manipulating classical waves, however, few studies have investigated valley states with complex wavenumbers, valley states in graded systems, or dispersion tuning for valley states. Here, we present tunable valley phononic crystals (PCs) composed of hybrid channel-cavity cells with three tunable parameters. Our PCs support valley states and Dirac cones with complex wavenumbers. They can be configured to form chirped valley PCs in which edge modes are slowed to zero group velocity states, where the energy at different frequencies accumulates at different designated locations. They enable multiple functionalities, including tuning …


Defect-Free Plastic Deformation Through Dimensionality Reduction And Self-Annihilation Of Topological Defects In Crystalline Solids, Yipeng Gao, Yongfeng Zhang, Larry K. Aagesen, Jianguo Yu, Min Long, Yunzhi Wang Feb 2020

Defect-Free Plastic Deformation Through Dimensionality Reduction And Self-Annihilation Of Topological Defects In Crystalline Solids, Yipeng Gao, Yongfeng Zhang, Larry K. Aagesen, Jianguo Yu, Min Long, Yunzhi Wang

Computer Science Faculty Publications and Presentations

As a signature of symmetry-breaking processes, the generation and annihilation of topological defects (domain walls, strings, etc.) are of great interest in condensed matter physics and cosmology. Here we propose a distinctive self-organization process through phase transitions, in which all the generated topological defects are dimensionality reduced and self-annihilated. In crystalline solids, such a unique mechanism allows a perfect single crystal after plastic deformation, which originates from the coupling of different types of broken symmetries.


In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor For Dissolved Oxygen, Nader Shehata, Ishac Kandas, Effat Samir Feb 2020

In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor For Dissolved Oxygen, Nader Shehata, Ishac Kandas, Effat Samir

Electrical & Computer Engineering Faculty Publications

Cerium oxide (ceria) nanoparticles (NPs) have been proved to be an efficient optical fluorescent material through generating visible emission (~530 nm) under violet excitation. This feature allowed ceria NPs to be used as an optical sensor via the fluorescence quenching Technique. In this paper, the impact of in-situ embedded gold nanoparticles (Au NPs) inside ceria nanoparticles was studied. Then, gold–ceria NPs were used for sensing dissolved oxygen (DO) in aqueous media. It was observed that both fluorescence intensity and lifetime were changed due to increased concentration of DO. Added gold was found to enhance the sensitivity of ceria to DO …