Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physics

Metal Modulation Epitaxy Growth For Extremely High Hole Concentrations Above 10(19) Cm(-3) In Gan, Gon Namkoong, Elaissa Trybus, Kyung Keun Lee, Michael Moseley, W. Alan Doolittle, David C. Look Dec 2007

Metal Modulation Epitaxy Growth For Extremely High Hole Concentrations Above 10(19) Cm(-3) In Gan, Gon Namkoong, Elaissa Trybus, Kyung Keun Lee, Michael Moseley, W. Alan Doolittle, David C. Look

Applied Research Center Publications

The free hole carriers in GaN have been limited to concentrations in the low 1018 cm−3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ~10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ~1.5 x 1019 cm−3.

© 2008 American Institute of Physics.


A Fast Image Super-Resolution Algorithm Using An Adaptive Wiener Filter, Russell C. Hardie Dec 2007

A Fast Image Super-Resolution Algorithm Using An Adaptive Wiener Filter, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

A computationally simple super-resolution algorithm using a type of adaptive Wiener filter is proposed. The algorithm produces an improved resolution image from a sequence of low-resolution (LR) video frames with overlapping field of view. The algorithm uses subpixel registration to position each LR pixel value on a common spatial grid that is referenced to the average position of the input frames. The positions of the LR pixels are not quantized to a finite grid as with some previous techniques. The output high-resolution (HR) pixels are obtained using a weighted sum of LR pixels in a local moving window. Using a …


Practical Sensor For Measurement Of Nitrogen, Dusan Popovic, Vladimir Milosavljevic, Steven Daniels Nov 2007

Practical Sensor For Measurement Of Nitrogen, Dusan Popovic, Vladimir Milosavljevic, Steven Daniels

Articles

This paper presents a method for precise measurement of atomic and molecular nitrogen in an oxygen-nitrogen dc plasma. This is achieved by monitoring the intensities of the atomic nitrogen spectral line at 821.6 nm and the molecular nitrogen bandhead at 337.1 nm, relative to the atomic oxygen spectral line at 844.7 nm. Oxygen is one of the most frequently used gases for surface chemical treatment, including deposition and etching, therefore the ability to measure and control the process and chemical composition of the process is essential. To validate this oxygen actimometry method for N2-xO2 (where x varies from 0 to …


Examination Of Energy And Group Velocities In Positive And Negative Index Chiral Materials With And Without Dispersion, Monish Ranjan Chatterjee, Partha P. Banerjee Sep 2007

Examination Of Energy And Group Velocities In Positive And Negative Index Chiral Materials With And Without Dispersion, Monish Ranjan Chatterjee, Partha P. Banerjee

Electrical and Computer Engineering Faculty Publications

Concepts of energy and group velocities, Poynting and propagation vectors are examined for both positive and negative index materials. Known definitions for these entities are explored in terms of the interplay of chirality and dispersion.


Analysis Of Beam Propagation In 90-Degree Holographic Recording And Readout Using Transfer Functions And Numerical 2-D-Laplace Inversion, Monish Ranjan Chatterjee, Partha P. Banerjee, George Nehmetallah Jun 2007

Analysis Of Beam Propagation In 90-Degree Holographic Recording And Readout Using Transfer Functions And Numerical 2-D-Laplace Inversion, Monish Ranjan Chatterjee, Partha P. Banerjee, George Nehmetallah

Electrical and Computer Engineering Faculty Publications

Recently, 2-D-Laplace analysis of recording and readout of edge-holograms was reported. Numerical Laplace inversion was examined for simple test cases. Inversion algorithms are applied to examine beam shaping and distortion in photovoltaic and photorefractive materials.


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Mar 2007

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Faculty Publications

No abstract provided.


Quarter-Wave Layers With 50% Reflectance For Obliquely Incident Unpolarized Light, R. M.A. Azzam, F. F. Sudradjat Feb 2007

Quarter-Wave Layers With 50% Reflectance For Obliquely Incident Unpolarized Light, R. M.A. Azzam, F. F. Sudradjat

Electrical Engineering Faculty Publications

The conditions under which light interference in a transparent quarter-wave layer of refractive index n1 on a transparent substrate of refractive index n2 leads to 50% reflectance for incident unpolarized light at an angle φ are determined. Two distinct solution branches are obtained that correspond to light reflection above and below the polarizing angle, φp , of zero reflection for p polarization. The real p and s amplitude reflection coefficients have the same (negative) sign for the solution branch φ>φp and have opposite signs for the solution branch φ<φp . Operation at φ<φp is the basis of a 50%–50% beam splitter that divides an incident totally polarized light beam (with p and s components of equal intensity) into reflected and …


Polarizing Properties Of Embedded Symmetric Trilayer Stacks Under Conditions Of Frustrated Total Internal Reflection, Rasheed M.A. Azzam, Siva R. Perla Jan 2007

Polarizing Properties Of Embedded Symmetric Trilayer Stacks Under Conditions Of Frustrated Total Internal Reflection, Rasheed M.A. Azzam, Siva R. Perla

Electrical Engineering Faculty Publications

An error in the application of the design procedure described in a previous paper [Appl. Opt. 45, 1650 (2006)] has been corrected, and new revised figures are included in this erratum.


Synthesize A Nanoscale Ferrofluid, Rob Snyder Jan 2007

Synthesize A Nanoscale Ferrofluid, Rob Snyder

Nanotechnology Teacher Summer Institutes

The chemical synthesis of a ferrofluid is a nanoscale science activity that originally appears in the Journal of Chemical Education. Access to the following website requires a subscription to the journal. J. Chem. Educ., 76, 943-948 (1999). The article was authored by Jonathan Breitzer and George Lisensky.


Super-Resolution Enhancement Of Digital Video, Russell C. Hardie, Richard R. Schultz, Kenneth E. Barner Jan 2007

Super-Resolution Enhancement Of Digital Video, Russell C. Hardie, Richard R. Schultz, Kenneth E. Barner

Electrical and Computer Engineering Faculty Publications

SR from digital video is a relatively new field, in only its third decade of existence. There is no doubt that as imaging sensor technologies, optical fabrication techniques, and computational algorithms mature, SR will find its way into digital video products such as cameras and digital cable set-top boxes. These papers on the fundamental SR topics of image registration, regularization, photometric diversity, detector nonuniformity, compression, optical design, and performance metrics serve as pioneers in the dynamic and evolving field of SR image reconstruction research and development. We are proud to present them to the image and video processing research community. …


Atmospheric Turbulence Compensation Of Point Source Images Using Asynchronous Stochastic Parallel Gradient Descent Technique On Amos 3.6 M Telescope, Mikhail Vorontsov, Jim F. Riker, Gary W. Carhart, Venkata S. Rao Gudimetla, Leonid A. Beresnev, Thomas Weyrauch Jan 2007

Atmospheric Turbulence Compensation Of Point Source Images Using Asynchronous Stochastic Parallel Gradient Descent Technique On Amos 3.6 M Telescope, Mikhail Vorontsov, Jim F. Riker, Gary W. Carhart, Venkata S. Rao Gudimetla, Leonid A. Beresnev, Thomas Weyrauch

Electrical and Computer Engineering Faculty Publications

The Stochastic Parallel Gradient Descent Technique-based Adaptive Optics (SPGD-AO) system described in this presentation does not use a conventional wavefront sensor. It uses a metric signal collected by a single pixel detector placed behind a pinhole in the image plane to drive three deformable mirrors (DMs). The system is designed to compensate the image for turbulence effects. The theory behind this method is described in detail in [1]. However this technique, while widely simulated and tested in the laboratory, was not yet verified in astronomical field site experiments. During the month of May 2007, a series of experiments with SPGD-AO …


Adaptive Optics Performance Over Long Horizontal Paths: Aperture Effects In Multi-Conjugate Adaptive Optical Systems, Miao Yu, Mikhail Vorontsov, Svetlana Lachinova, Jim F. Riker, Venkata S. Rao Gudimetla Jan 2007

Adaptive Optics Performance Over Long Horizontal Paths: Aperture Effects In Multi-Conjugate Adaptive Optical Systems, Miao Yu, Mikhail Vorontsov, Svetlana Lachinova, Jim F. Riker, Venkata S. Rao Gudimetla

Electrical and Computer Engineering Faculty Publications

We analyze various scenarios of the aperture effects in adaptive optical receiver-type systems when inhomogeneities of the wave propagation medium are distributed over long horizontal propagation path, or localized in a few thin layers remotely located from the receiver telescope pupil. Phase aberration compensation is performed using closed-loop control architectures based on phase conjugation and decoupled stochastic parallel gradient descent (DSPGD) control algorithms. Both receiver system aperture diffraction effects and the impact of wave-front corrector position on phase aberration compensation efficiency are analyzed for adaptive systems with single or multiple wave-front correctors.


Entopic Lattice Boltzmann Representations Required To Recover Navier Stokes Flows, Brian Keating, George Vahala, Jeffrey Yepez, Min Soe, Linda L. Vahala Jan 2007

Entopic Lattice Boltzmann Representations Required To Recover Navier Stokes Flows, Brian Keating, George Vahala, Jeffrey Yepez, Min Soe, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

There are two disparate formulations of the entropic lattice Boltzmann scheme: one of these theories revolves around the analog of the discrete Boltzmann H function of standard extensive statistical mechanics, while the other revolves around the nonextensive Tsallis entropy. It is shown here that it is the nonenforcement of the pressure tensor moment constraints that lead to extremizations of entropy resulting in Tsallis-like forms. However, with the imposition of the pressure tensor moment constraint, as is fundamentally necessary for the recovery of the Navier-Stokes equations, it is proved that the entropy function must be of the discrete Boltzmann form. Three-dimensional …


Reactive Oxygen Emission From Microwave Discharge Plasmas, S. Popovic, M. Rašković, S. P. Kuo, L. Vuskovic Jan 2007

Reactive Oxygen Emission From Microwave Discharge Plasmas, S. Popovic, M. Rašković, S. P. Kuo, L. Vuskovic

Physics Faculty Publications

Metastable oxygen atoms and molecules have received increased interest because of their function in surface modification, bio-decontamination and many other industrial applications, in addition to the role in the upper atmospheric layer chemistry. We review work on production and detection of metastable oxygen and we describe our experiments, including the development of techniques for measurement of metastable molecular oxygen. We show that either metastable oxygen molecules or metastable oxygen atoms can be produced in large quantities in electrical discharges, carefully tailored to promote the required kinetics. Although the two species may coexist, colder discharge regimes favor production of molecules, while …


Tio2 Breakdown Under Pulsed Conditions, G. Zhao, R. P. Joshi, V. K. Lakdawala, E. Schamiloglu, H. Hjalmarson Jan 2007

Tio2 Breakdown Under Pulsed Conditions, G. Zhao, R. P. Joshi, V. K. Lakdawala, E. Schamiloglu, H. Hjalmarson

Electrical & Computer Engineering Faculty Publications

Model studies of current conduction and breakdown in TiO2 were carried out. Our simulation results indicate that electrical breakdown of TiO2 under multiple-pulsed conditions can occur at lower voltages as compared to quasi-dc biasing. This is in agreement with recent experimental data and is indicative of a cumulative phenomena. We demonstrate that the lower breakdown voltages observed in TiO2 under pulsed conditions is a direct rise-time effect, coupled with successive detrapping at the grain boundaries. 2007 American Institute of Physics.


Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2007

Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The growth of indium on a vicinal Si (100) - (2×1) surface at room temperature by femtosecond pulsed laser deposition (fsPLD) was investigated by in situ reflection high-energy electron diffraction (RHEED). Recovery of the RHEED intensity was observed between laser pulses and when the growth was terminated. The surface diffusion coefficient of deposited In on initial two-dimensional (2D) In- (2×1) layer was determined. As growth proceeds, three-dimensional In islands grew on the 2D In- (2×1) layer. The RHEED specular profile was analyzed during film growth, while the grown In islands were examined by ex situ atomic force microscopy. The full …


Study Of Soliton Stabilization In D+1 Dimensions Using Novel Analytical And Numerical Techniques, George Nehmetallah, Partha P. Banerjee Jan 2007

Study Of Soliton Stabilization In D+1 Dimensions Using Novel Analytical And Numerical Techniques, George Nehmetallah, Partha P. Banerjee

Electrical and Computer Engineering Faculty Publications

In this Chapter, we provide a brief review of the underlying nonlinear Schrödinger and associated equations that model spatio-temporal propagation in one and higher dimensions in a nonlinear dispersive environment. Particular attention is given to fast adaptive numerical techniques to solve such equations, and in the presence of dispersion and nonlinearity management, saturating nonlinearity and nonparaxiality. A unique variational approach is also outlined which helps in determining the ranges of nonlinearity and dispersion parameters to ensure stable solutions of the nonlinear equations. The propagation of 3+1 dimensional spatio-temporal pulses, or optical bullets is also modeled using a fast adaptive split-step …