Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

2020

Institution
Keyword
Publication
Publication Type
File Type

Articles 31 - 53 of 53

Full-Text Articles in Physics

Quantum Random Walk Search And Grover's Algorithm - An Introduction And Neutral-Atom Approach, Anna Maria Houk Jun 2020

Quantum Random Walk Search And Grover's Algorithm - An Introduction And Neutral-Atom Approach, Anna Maria Houk

Physics

In the sub-field of quantum algorithms, physicists and computer scientist take classical computing algorithms and principles and see if there is a more efficient or faster approach implementable on a quantum computer, i.e. a ”quantum advantage”. We take random walks, a widely applicable group of classical algorithms, and move them into the quantum computing paradigm. Additionally, an introduction to a popular quantum search algorithm called Grover’s search is included to guide the reader to the development of a quantum search algorithm using quantum random walks. To close the gap between algorithm and hardware, we will look at using neutral-atom (also …


A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin May 2020

A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin

Faculty Publications

In this work, the behavior of dilute interstitial helium in W–Mo binary alloys was explored through the application of a first principles-informed neural network (NN) in order to study the early stages of helium-induced damage and inform the design of next generation materials for fusion reactors. The neural network (NN) was trained using a database of 120 density functional theory (DFT) calculations on the alloy. The DFT database of computed solution energies showed a linear dependence on the composition of the first nearest neighbor metallic shell. This NN was then employed in a kinetic Monte Carlo simulation, which took into …


Analyzing Flash X-Ray Machine Diagnostics, Sebastian Bustillo, Asaph Camillo, Jake Morris May 2020

Analyzing Flash X-Ray Machine Diagnostics, Sebastian Bustillo, Asaph Camillo, Jake Morris

Scholars Day Conference

The Cygnus Dual Beam Radiographic Facility consists of two flash x-ray machines, Cygnus 1 and 2. The seamless performance of these machines is critical to the maintenance of the United States stockpile of nuclear weapons. Since these SubCritical experiments cost about $104 million when something malfunctions millions of dollars are lost. As a result, it is imperative to assess the performance of the machine from diagnostics collected by the different sensors. Its performance is measured by the level of radiation dose a shot obtains. Utilizing exploratory data analysis, interesting trends were found and a 74.1% level of correctness was achieved …


Volume 12, Haleigh James, Hannah Meyls, Hope Irvin, Megan E. Hlavaty, Samara L. Gall, Austin J. Funk, Karyn Keane, Sarah Ghali, Antonio Harvey, Andrew Jones, Rachel Hazelwood, Madison Schmitz, Marija Venta, Haley Tebo, Jeremiah Gilmer, Bridget Dunn, Benjamin Sullivan, Mckenzie Johnson Apr 2020

Volume 12, Haleigh James, Hannah Meyls, Hope Irvin, Megan E. Hlavaty, Samara L. Gall, Austin J. Funk, Karyn Keane, Sarah Ghali, Antonio Harvey, Andrew Jones, Rachel Hazelwood, Madison Schmitz, Marija Venta, Haley Tebo, Jeremiah Gilmer, Bridget Dunn, Benjamin Sullivan, Mckenzie Johnson

Incite: The Journal of Undergraduate Scholarship

Introduction, Dr. Roger A. Byrne, Dean

From the Editor, Dr. Larissa "Kat" Tracy

From the Designers, Rachel English, Rachel Hanson

Immortality in the Mortal World: Otherworldly Intervention in "Lanval" and "The Wife of Bath's Tale" by Haleigh James

Analysis of Phenolic Compounds in Moroccan Olive Oils by HPLC by Hannah Meyls

Art by Hope Irvin

The Effects of Cell Phone Use on Gameplay Enjoyment and Frustration by Megan E. Hlavaty, Samara L. Gall, and Austin J. Funk

Care, No Matter What: Planned Parenthood's Use of Organizational Rhetoric to Expand its Reputation by Karyn Keane

Analysis of Petroleum Products for …


Quantum Computing And Quantum Algorithms, Daniel Serban Apr 2020

Quantum Computing And Quantum Algorithms, Daniel Serban

Senior Honors Theses

The field of quantum computing and quantum algorithms is studied from the ground up. Qubits and their quantum-mechanical properties are discussed, followed by how they are transformed by quantum gates. From there, quantum algorithms are explored as well as the use of high-level quantum programming languages to implement them. One quantum algorithm is selected to be implemented in the Qiskit quantum programming language. The validity and success of the resulting computation is proven with matrix multiplication of the qubits and quantum gates involved.


Study Of Deformation Parameters (Β2, Δ) For 18,20,22,24,26,28ne Isotopes In Sdpf Shell, Ahmed H. Ali, Maha Taha Idrees Mar 2020

Study Of Deformation Parameters (Β2, Δ) For 18,20,22,24,26,28ne Isotopes In Sdpf Shell, Ahmed H. Ali, Maha Taha Idrees

Karbala International Journal of Modern Science

The quadrupole deformation is basic to study the shape transitions; it is possible to predict many important properties of even-even nuclei as a function of the deformation parameter. The deformations of nuclei are important for understanding their shapes prolate or oblate. The quadrupole deformation parameters were calculated by the transition probability B (E2) for 18, 20, 22, 24, 26,28Ne isotopes, were adopted different interactions three. The calculations are performed with the Bohr-Mottelson (B-M) effective charges, which represent the effect of the core-polarizations. Also, the deformation parameters were calculated for different nuclei and adopted two methods of calculation: from reduced …


Investigation Of Glucose Oxidation At Gold Nanoparticles Deposited At Carbon Nanotubes Modified Glassy Carbon Electrode By Theoretical And Experimental Methods., Farhat Saira, Humaira Razzaq, Misbah Mumtaz, Safeer Ahmad, Muhammad Aftab Rafiq, Azra Yaqub, Nabiha Dilshad, Ayesha Ihsan, Muhammad Masood Ul Hasan Mar 2020

Investigation Of Glucose Oxidation At Gold Nanoparticles Deposited At Carbon Nanotubes Modified Glassy Carbon Electrode By Theoretical And Experimental Methods., Farhat Saira, Humaira Razzaq, Misbah Mumtaz, Safeer Ahmad, Muhammad Aftab Rafiq, Azra Yaqub, Nabiha Dilshad, Ayesha Ihsan, Muhammad Masood Ul Hasan

Karbala International Journal of Modern Science

In the current research work, AuNPs-CNTs nanocomposite was synthesized chemically and decoration of AuNPs on the surface of MWCNTs was confirmed by UV-Vis, SEM and XPS analysis. Synthesized nanocomposite was utilized for its application towards non-enzymatic glucose sensing by modifying glassy carbon electrode with nanocomposite employing electrochemical techniques. In addition, theoretical calculations were performed by Density Functional Theory (DFT), employing B3YLP with basis set 6- 311+G(d,p) in gaseous phase and LANL2DZ basis set. Both theoretical and experimental results predicted Au-CNTs composite as a better candidate for glucose oxidation as compared to CNTs and AuNPs alone, owing to the synergistic effect …


Using Freak Descriptor To Classify Plasma Influence In Mice Sperm, Ekhlas Falih, Alaa Noori Mazhar Mar 2020

Using Freak Descriptor To Classify Plasma Influence In Mice Sperm, Ekhlas Falih, Alaa Noori Mazhar

Karbala International Journal of Modern Science

Numerous classification mechanisms anticipate the class's instances to be carried out as the features' vectors, namely the points in a feature's space. It is oftentimes a chance to make an informative exemplification of an image's feature vector for classification problems in computer vision like utilizing global descriptors for the texture description or shape description. The proposed methodology is to classify the sperm image in mice that has been affected through plasma and this methodology consists of three stages. The points of interest could be elicited from sperm plasma images in the first stage by utilizing Adaptive and Generic Corner detector …


Editorial Board Mar 2020

Editorial Board

Karbala International Journal of Modern Science

No abstract provided.


Global Gradient-Based Phase Unwrapping Algorithm For Increased Performance In Wavefront Sensing, Bryan R. Bartelt Mar 2020

Global Gradient-Based Phase Unwrapping Algorithm For Increased Performance In Wavefront Sensing, Bryan R. Bartelt

Theses and Dissertations

As the reliance on satellite data for military and commercial use increases, more effort must be exerted to protect our space-based assets. In order to help increase our space domain awareness (SDA), new approaches to ground-based space surveillance via wavefront sensing must be adopted. Improving phase-unwrapping algorithms in order to assist in phase retrieval methods is one way of increasing the performance in current adaptive optics (AO) systems. This thesis proposes a new phase-unwrapping algorithm that uses a global, gradient-based technique to more rapidly identify and correct for areas of phase wrapping during particular phase retrieval methods. This is beneficial …


Defect-Free Plastic Deformation Through Dimensionality Reduction And Self-Annihilation Of Topological Defects In Crystalline Solids, Yipeng Gao, Yongfeng Zhang, Larry K. Aagesen, Jianguo Yu, Min Long, Yunzhi Wang Feb 2020

Defect-Free Plastic Deformation Through Dimensionality Reduction And Self-Annihilation Of Topological Defects In Crystalline Solids, Yipeng Gao, Yongfeng Zhang, Larry K. Aagesen, Jianguo Yu, Min Long, Yunzhi Wang

Computer Science Faculty Publications and Presentations

As a signature of symmetry-breaking processes, the generation and annihilation of topological defects (domain walls, strings, etc.) are of great interest in condensed matter physics and cosmology. Here we propose a distinctive self-organization process through phase transitions, in which all the generated topological defects are dimensionality reduced and self-annihilated. In crystalline solids, such a unique mechanism allows a perfect single crystal after plastic deformation, which originates from the coupling of different types of broken symmetries.


Dynamics And Stability Of The Two Body Problem With Yukawa Correction, Eli Cavan, Ioannis Haranas, Ioannis Gkigkitzis Jan 2020

Dynamics And Stability Of The Two Body Problem With Yukawa Correction, Eli Cavan, Ioannis Haranas, Ioannis Gkigkitzis

Physics and Computer Science Faculty Publications

We explore the dynamics and stability of the two body problem by modifying the Newtonian potential with the Yukawa potential. This model may be considered a theory of modified gravity; where the interaction is not simply the kepler solution for large distance. The stability is investigated by deriving the Jacobian of the linearized matrix equation and evaluating the eigenvalues of the various equilibrium points calculated during the analysis. The subcases of a purely Yukawa and purely Newtonian potential are also explored.


Agenda, Shubha Tewari Jan 2020

Agenda, Shubha Tewari

Science and Engineering Saturday Seminars

Abstracts for six Science and Engineering Saturday Seminars.


Arduino Microcontrollers In The Classroom: Teaching How To Phrase Effective Science Questions And How To Answer Them With Original Data, Tony Dinsmore Jan 2020

Arduino Microcontrollers In The Classroom: Teaching How To Phrase Effective Science Questions And How To Answer Them With Original Data, Tony Dinsmore

Science and Engineering Saturday Seminars

Arduino microcontrollers in the classroom: teaching how to phrase effective science questions and how to answer them with original data. Prof. Tony Dinsmore, UMass Physics This workshop will develop course modules that address a challenge in the science curriculum: how do we teach basic problem-solving and curiosity-based research skills in a classroom setting? The standard science curriculum teaches concepts and theory quite well but leaves rather little opportunity for students to take the lead in designing and implementing their own investigations. The workshop will use the Arduino, an inexpensive microcontroller that is simple to set up. A huge range of …


Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li Jan 2020

Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software suite …


Analytic Threads - Annual Newsletters 2014-2020, Messiah University Jan 2020

Analytic Threads - Annual Newsletters 2014-2020, Messiah University

Educator Scholarship & Departmental Newsletters

Faculty and student updates. Analytic Threads is the annual newsletter of the Department of Computing, Mathematics and Physics at Messiah University. It is sent annually to alumni and is also available electronically at the website messiah.edu/cmp


Need For Simplicity And Everything Is A Matter Of Degree: How Zadeh's Philosophy Is Related To Kolmogorov Complexity, Quantum Physics, And Deep Learning, Vladik Kreinovich, Olga Kosheleva, Andres Ortiz-Muñoz Jan 2020

Need For Simplicity And Everything Is A Matter Of Degree: How Zadeh's Philosophy Is Related To Kolmogorov Complexity, Quantum Physics, And Deep Learning, Vladik Kreinovich, Olga Kosheleva, Andres Ortiz-Muñoz

Departmental Technical Reports (CS)

Many people remember Lofti Zadeh's mantra -- that everything is a matter of degree. This was one of the main principles behind fuzzy logic. What is somewhat less remembered is that Zadeh also used another important principle -- that there is a need for simplicity. In this paper, we show that together, these two principles can generate the main ideas behind such various subjects as Kolmogorov complexity, quantum physics, and deep learning. We also show that these principles can help provide a better understanding of an important notion of space-time causality.


Nis2 As A Broadband Saturable Absorber For Ultrafast Pulse Lasers, Pengfei Wang, Han Zhang, Yu Yin, Qiuyun Ouyang, Yujin Chen, Elfed Lewis, Gerald Farrell, Masaki Tokurakawa, Sulaiman Wadi Harun, Cong Wang, Shi Li Jan 2020

Nis2 As A Broadband Saturable Absorber For Ultrafast Pulse Lasers, Pengfei Wang, Han Zhang, Yu Yin, Qiuyun Ouyang, Yujin Chen, Elfed Lewis, Gerald Farrell, Masaki Tokurakawa, Sulaiman Wadi Harun, Cong Wang, Shi Li

Articles

Nickel disulfide (NiS2) has recently been found to possess strong nonlinear saturable absorption properties. This feature is highly attractive for nonlinear photonics applications. Ultrafast pulse generation is successfully demonstrated in this article for both Ytterbium- and Erbium-doped fibre lasers using micro-fibre deposited nickel disulfide (NiS2) as a saturable absorber (SA). The fabricated SA device has a modulation depth of 23% at 1.06 μm and 30.8% at 1.55 μm. Stable dissipative soliton operation was achieved at 1064.5 nm with a pulse duration of 11.7 ps and another stable conventional soliton pulse train was also obtained at 1560.2 nm with a pulse …


Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi Jan 2020

Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi

Theses and Dissertations

Quantum computing is an interdisciplinary field at the intersection of computer science, mathematics, and physics that studies information processing tasks on a quantum computer. A quantum computer is a device whose operations are governed by the laws of quantum mechanics. As building quantum computers is nearing the era of commercialization and quantum supremacy, it is essential to think of potential applications that we might benefit from. Among many applications of quantum computation, one of the emerging fields is quantum machine learning. We focus on predictive models for binary classification and variants of Support Vector Machines that we expect to be …


A Framework Of Multi-Dimensional And Multi-Scale Modeling With Applications, Zilong Li Jan 2020

A Framework Of Multi-Dimensional And Multi-Scale Modeling With Applications, Zilong Li

Doctoral Dissertations

In this dissertation, a framework for multi-dimensional and multi-scale modeling is proposed. The essential idea is based on oriented space curves, which can be represented as a 3D slender object or 1D step parameters. SMILES and Masks provide functionalities that extend slender objects into branched and other objects. We treat the conversion between 1D, 2D, 3D, and 4D representations as data unification. A mathematical analysis of different methods applied to helices (a special type of space curves) is also provided. Computational implementation utilizes Model-ViewController design principles to integrate data unification with graphical visualizations to create a dashboard. Applications of multi-dimensional …


Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin Jan 2020

Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

This guest editorial summarizes the Special Section on Machine Learning in Optics.


Complex Ciliary Flows Around Stentor Polymorphus In Solutions Of 2% Buttermilk And Chlamydomonas Reinhardtii, Eliana B. Smithstein Jan 2020

Complex Ciliary Flows Around Stentor Polymorphus In Solutions Of 2% Buttermilk And Chlamydomonas Reinhardtii, Eliana B. Smithstein

Scripps Senior Theses

Stentor are large, unicellular ciliates of the Heterotricha order. They live in both freshwater and marine habitats and are mostly found in ponds. I studied Stentor polymorphus, which is a species of Stentor only recently discovered to be lab culturable. They range from 0.5-1.5mm in length and are unusual because they live with endosymbiotic algae and are much more likely than other, more widely studied, species of Stentor to form aggregates while they are eating. There are three main components to this thesis: First, I established protocols for keeping a viable S. polymorphus culture, since no protocols had been …


Developing A Uas-Deployable Methane Sensor Using Low-Cost Modular Open-Source Components, Gavin Demali Jan 2020

Developing A Uas-Deployable Methane Sensor Using Low-Cost Modular Open-Source Components, Gavin Demali

Williams Honors College, Honors Research Projects

This project aimed to develop a methane sensor for deployment on an unmanned aerial system (UAS), or drone, platform. This design is centered around low cost, commercially available modular hardware components and open source software libraries. Once successfully developed, this system was deployed at the Bath Nature Preserve in Bath Township, Summit County Ohio in order to detect any potential on site fugitive methane emissions in the vicinity of the oil and gas infrastructure present. The deliverables of this project (i.e. the data collected at BNP) will be given to the land managers there to better inform future management and …