Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 27 of 27

Full-Text Articles in Other Oceanography and Atmospheric Sciences and Meteorology

Sulfate Enhances The Adsorption And Retention Of Cu(Ii) And Zn(Ii) To Dispersed And Aggregated Iron Oxyhydroxide Nanoparticles, Emma M. Kocik, Abigail Kim, Miranda L. Aiken, Lauren Smith, Christopher S. Kim Feb 2024

Sulfate Enhances The Adsorption And Retention Of Cu(Ii) And Zn(Ii) To Dispersed And Aggregated Iron Oxyhydroxide Nanoparticles, Emma M. Kocik, Abigail Kim, Miranda L. Aiken, Lauren Smith, Christopher S. Kim

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The adsorption and retention of metal ions to nanoscale iron (hydr)oxides in aqueous systems is significantly influenced by prevailing environmental conditions. We examined the influence of sulfate, the second most common anion in seawater that is present in many other natural aquatic systems, on the adsorption and retention of Cu(II) and Zn(II) to synthetic iron oxyhydroxide nanoparticles (NPs) and their aggregates. Batch uptake experiments with monodisperse NPs and NPs aggregated by changes in pH, ionic strength, and temperature were conducted over sulfate concentrations ranging from 0 to 0.30 M. The introduction of 0.03 M sulfate significantly increased the initial adsorption …


Symbiotic Ucyn-A Strains Co-Occurred With El Niño, Relaxed Upwelling, And Varied Eukaryotes Over 10 Years Off Southern California, Colette Fletcher-Hoppe, Yi-Chun Yeh, Yubin Raut, J. L. Weissman, Jed A. Fuhrman Jun 2023

Symbiotic Ucyn-A Strains Co-Occurred With El Niño, Relaxed Upwelling, And Varied Eukaryotes Over 10 Years Off Southern California, Colette Fletcher-Hoppe, Yi-Chun Yeh, Yubin Raut, J. L. Weissman, Jed A. Fuhrman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Biological nitrogen fixation, the conversion of N2 gas into a bioavailable form, is vital to sustaining marine primary production. Studies have shifted beyond traditionally studied tropical diazotrophs. Candidatus Atelocyanobacterium thalassa (or UCYN-A) has emerged as a focal point due to its streamlined metabolism, intimate partnership with a haptophyte host, and broad distribution. Here, we explore the environmental parameters that govern UCYN-A’s presence at the San Pedro Ocean Time-series (SPOT), its host specificity, and statistically significant interactions with non-host eukaryotes from 2008-2018. 16S and 18S rRNA gene sequences were amplified by “universal primers” from monthly samples and resolved into Amplicon …


Relative Energy Comparison For Various Water Clusters Using Mp2, Df-Mp2, And Ccsd(T):Mp2 Methods, Qihang Wang Apr 2022

Relative Energy Comparison For Various Water Clusters Using Mp2, Df-Mp2, And Ccsd(T):Mp2 Methods, Qihang Wang

Honors Theses

The study of water clusters is an important area of research in many disciplines, such as biology, physical chemistry, and environmental studies. However, due to the difficulty in studying larger water clusters, such as clathrate hydrates, it is beneficial to obtain accurate descriptions of smaller water clusters to use as models for larger systems via computational methods. By starting with small water clusters, such as (H2O)6, and moving into larger systems it is possible to build up data on various water structures that can determine the energetics of the various geometries within a certain number of water molecules. …


Characterization Of Uranium, Lead, And Rare Earth Element Pollution In Natural Soils And Sediments, Hope Rasmussen Apr 2021

Characterization Of Uranium, Lead, And Rare Earth Element Pollution In Natural Soils And Sediments, Hope Rasmussen

Civil and Environmental Engineering Theses and Dissertations

Heavy metals in the environment add to the global burden of pollution, negatively impacting public health and ecosystem resilience. This study included projects regarding uranium (U), lead (Pb), and rare earth elements (REE) in natural samples, due to their known toxicity, ubiquity, and relevance in context to recent pollution trends. The first project focused on testing the potential of using a hydroxyapatite product as a remediation solution for U-contaminated groundwater and soil at an EPA Superfund site. The results showed that the U was sequestered in a highly crystalline mineral form within the solids, guiding the EPA to specify the …


Global Atmospheric Budget Of Acetone: Air-Sea Exchange And The Contribution To Hydroxyl Radicals, Siyuan Wang, Eric C. Apel, Rebecca H. Schwantes, Kelvin H. Bates, Daniel J. Jacob, Emily V. Fischer, Rebecca S. Hornbrook, Alan J. Hills, Louisa K. Emmons, Laura L. Pan, Shawn Honomichl, Simone Tilmes, Jean‐François Lamarque, Mingxi Yang, Christa A. Marandino, E. S. Saltzman, Warren J. De Bruyn, Sohiko Kameyama, Hiroshi Tanimoto, Yuko Omori, Samuel R. Hall, Kirk Ullmann, Thomas B. Ryerson, Chelsea R. Thompson, Jeff Peischl, Bruce C. Daube, Róisín Commane, Kathryn Mckain, Colm Sweeney, Alexander B. Thames, David O. Miller, William H. Brune, Glenn S. Diskin, Joshua P. Digangi, Steven C. Wofsy Jul 2020

Global Atmospheric Budget Of Acetone: Air-Sea Exchange And The Contribution To Hydroxyl Radicals, Siyuan Wang, Eric C. Apel, Rebecca H. Schwantes, Kelvin H. Bates, Daniel J. Jacob, Emily V. Fischer, Rebecca S. Hornbrook, Alan J. Hills, Louisa K. Emmons, Laura L. Pan, Shawn Honomichl, Simone Tilmes, Jean‐François Lamarque, Mingxi Yang, Christa A. Marandino, E. S. Saltzman, Warren J. De Bruyn, Sohiko Kameyama, Hiroshi Tanimoto, Yuko Omori, Samuel R. Hall, Kirk Ullmann, Thomas B. Ryerson, Chelsea R. Thompson, Jeff Peischl, Bruce C. Daube, Róisín Commane, Kathryn Mckain, Colm Sweeney, Alexander B. Thames, David O. Miller, William H. Brune, Glenn S. Diskin, Joshua P. Digangi, Steven C. Wofsy

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both …


Seasonal Transport Of Dissolved Inorganic Carbon And Total Alkalinity Across The Louisiana Shelf, Michelle M. Anderson Jun 2020

Seasonal Transport Of Dissolved Inorganic Carbon And Total Alkalinity Across The Louisiana Shelf, Michelle M. Anderson

LSU Master's Theses

Rivers and wetlands are a major source of terrestrial derived carbon for coastal ocean margins. Unfortunately, Louisiana’s wetlands are threatened by ongoing high rates of erosion, deterioration, and unprecedented rates of river water discharge that changes seasonally, leading to a net loss of terrestrial carbon into the northern Gulf of Mexico (nGOM). There exists a current lack of understanding about the distribution of dissolved inorganic carbon (DIC) and total alkalinity (TAlk) within the shallowest regions of the Louisiana shelf. Even less is known about how the transport of DIC alters seasonally with changes in river outflow and shelf currents. Quantifying …


Air/Sea Transfer Of Highly Soluble Gases Over Coastal Waters, J. G. Porter, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman Jan 2020

Air/Sea Transfer Of Highly Soluble Gases Over Coastal Waters, J. G. Porter, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The deposition of soluble trace gases to the sea surface is not well studied due to a lack of flux measurements over the ocean. Here we report simultaneous air/sea eddy covariance flux measurements of water vapor, sulfur dioxide (SO2), and momentum from a coastal North Atlantic pier. Gas transfer velocities were on average about 20% lower for SO2 than for H2O. This difference is attributed to the difference in molecular diffusivity between the two molecules (D SO 2/D H 2O = 0.5), in reasonable agreement with bulk parameterizations in air/sea gas …


Seasonal Origins Of Soil Water Used By Trees, Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, Gregory R. Goldsmith Mar 2019

Seasonal Origins Of Soil Water Used By Trees, Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Rain recharges soil water storages and either percolates downward into aquifers and streams or is returned to the atmosphere through evapotranspiration. Although it is commonly assumed that summer rainfall recharges plant-available water during the growing season, the seasonal origins of water used by plants have not been systematically explored. We characterize the seasonal origins of waters in soils and trees by comparing their midsummer isotopic signatures (δ2H) to seasonal isotopic cycles in precipitation, using a new seasonal origin index. Across 182 Swiss forest sites, xylem water isotopic signatures show that summer rain was not the predominant water source …


Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith May 2018

Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding how precipitation isotopes vary spatially and temporally is important for tracer applications. We tested how well month‐to‐month variations in precipitation δ18O and δ2H were captured by sinusoidal cycles, and how well spatial variations in these seasonal cycles could be predicted, across Switzerland. Sine functions representing seasonal cycles in precipitation isotopes explained between 47% and 94% of the variance in monthly δ18O and δ2H values at each monitoring site. A significant sinusoidal cycle was also observed in line‐conditioned excess. We interpolated the amplitudes, phases, and offsets of these sine functions across the landscape, using multiple linear …


Stable Bromine Isotope Signature Of Bromoform From Enzymatic And Abiotic Formation Pathways And Its Application In Identifying Sources Of Environmental Bromoform In The Damariscotta River, Chengyang Wang Jan 2018

Stable Bromine Isotope Signature Of Bromoform From Enzymatic And Abiotic Formation Pathways And Its Application In Identifying Sources Of Environmental Bromoform In The Damariscotta River, Chengyang Wang

Honors Theses

Bromoform is a major source of atmospheric bromine. Most bromoform is produced by marine organisms including macroalgae and phytoplankton, using the enzyme bromoperoxidase (BPO). Bromoform can also be a byproduct of industrial processes such as water disinfection. Identifying sources of environmental bromoform is still a challenge. A novel technique of using quadrupole mass spectrometry coupled to a gas chromatography (GCqMS) was developed and optimized for Br isotope analyses. The study shows that GCqMS in single ion monitoring (SIM) mode can measure 81Br with precision of around ±0.7‰ (60pmol bromoform injected). This study aims to investigate stable Br isotopes of bromoform …


No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade Nov 2017

No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands store roughly one-third of the terrestrial soil carbon and release the potent greenhouse gas methane (CH4) to the atmosphere, making these wetlands among the most important ecosystems in the global carbon cycle. Despite their importance, the controls of anaerobic decomposition of organic matter to carbon dioxide (CO2) and CH4 within peatlands are not well understood. It is known, however, that the enzymes responsible for CH4 production require cobalt, iron and nickel, and there is a growing appreciation for the potential role of trace metal limitation in anaerobic decomposition. To explore the possibility of …


Estimation Of Bubble-Mediated Air–Sea Gas Exchange From Concurrent Dms And Co2 Transfer Velocities At Intermediate–High Wind Speeds, Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. De Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, Eric S. Saltzman Jul 2017

Estimation Of Bubble-Mediated Air–Sea Gas Exchange From Concurrent Dms And Co2 Transfer Velocities At Intermediate–High Wind Speeds, Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. De Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2/ were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (1kw/ over a range of wind speeds up to 21ms􀀀1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with 1kw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation …


Carbon Nanotubes Affect The Toxicity Of Cuo Nanoparticles To Denitrification In Marine Sediments By Altering Cellular Internalization Of Nanoparticle, Xiong Zheng, Yinglong Su, Yinguang Chen, Rui Wan, Mu Li, Haining Huang, Xu Li Jun 2016

Carbon Nanotubes Affect The Toxicity Of Cuo Nanoparticles To Denitrification In Marine Sediments By Altering Cellular Internalization Of Nanoparticle, Xiong Zheng, Yinglong Su, Yinguang Chen, Rui Wan, Mu Li, Haining Huang, Xu Li

Department of Civil and Environmental Engineering: Faculty Publications

Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX-N (NO3-N and NO2-N) in the presence of CuO NPs was only 62.3%, but it …


Temporal Variation In Optical Properties Of Chromophoric Dissolved Organic Matter (Cdom) In Southern California Coastal Waters With Nearshore Kelp And Seagrass, Catherine D. Clark, Warren J. De Bruyn, Paige Aiona Oct 2015

Temporal Variation In Optical Properties Of Chromophoric Dissolved Organic Matter (Cdom) In Southern California Coastal Waters With Nearshore Kelp And Seagrass, Catherine D. Clark, Warren J. De Bruyn, Paige Aiona

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Optical properties of chromophoric dissolved organic matter (CDOM) were measured in surf zone waters in diurnal field studies at a Southern California beach with nearshore kelp and seagrass beds and intertidal plant wrack. Absorption coefficients (aCDOM(300 nm)) ranged from 0.35 m21 to 3.7 m21 with short-term variability<1 h, increases at ebb and flood tides and higher values (6 m21) during an offshore storm event. Spectral slopes (S) ranged from 0.0028 nm21 to 0.017 nm21, with higher values after the storm; S was generally inversely correlated with aCDOM(300 nm). 3-D excitation–emission matrix spectra (EEMs) for samples with lower S values had humic-type peaks associated with terrestrial material (A, C), marine microbial material (M) and protein peaks, characteristic of freshly produced organic material. Samples with high S values had no or reduced protein peaks, consistent with aged material. Fluorescent indexes (f450/f500 >2.5, BIX>1.1) were consistent with microbial aquatic sources. Leachates of senescent kelp and seagrass had protein and humic-type EEM peaks. After solar simulator irradiation (4 h), protein peaks rapidly photochemically degraded, humic-type peak C increased in intensity and peak M disappeared. Optical characteristics of kelp leachates were most similar to field samples, …


Air-Sea Dimethylsulfide (Dms) Gas Transfer In The North Atlantic: Evidence For Limited Interfacial Gas Exchange At High Wind Speed, T. G. Bell, Warren J. De Bruyn, S. D. Miller, B. Ward, K. Christensen, E. S. Saltzman Jan 2013

Air-Sea Dimethylsulfide (Dms) Gas Transfer In The North Atlantic: Evidence For Limited Interfacial Gas Exchange At High Wind Speed, T. G. Bell, Warren J. De Bruyn, S. D. Miller, B. Ward, K. Christensen, E. S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k(660)) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s(-1). At higher wind speeds the relationship between k(660) and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent …


The Spectrophotometric Analysis Of Lead Carbonate Complexation And Carbonate Saturation States In Seawater, Regina Anita Easley Jan 2013

The Spectrophotometric Analysis Of Lead Carbonate Complexation And Carbonate Saturation States In Seawater, Regina Anita Easley

USF Tampa Graduate Theses and Dissertations

The carbon dioxide (CO2) system is the primary buffer in seawater which controls oceanic pH. Changes in the marine CO2 system affect a number of processes such as metal speciation, mineral saturation states, auditory responses in fish, and primary productivity rates. Increased atmospheric concentrations of CO2 from human activities (e.g. burning of fossil fuels, deforestation, and cement production) has led to a global decrease in surface ocean pH termed anthropogenic ocean acidification. One particular concern in response to increased oceanic CO2 is a substantial decrease in the calcium carbonate (CaCO3) saturation states, Ω …


Production Of Bioactive Secondary Metabolites By Florida Harmful Bloom Dinoflagellates Karenia Brevis And Pyrodinium Bahamense, Cheska Burleson Jul 2012

Production Of Bioactive Secondary Metabolites By Florida Harmful Bloom Dinoflagellates Karenia Brevis And Pyrodinium Bahamense, Cheska Burleson

USF Tampa Graduate Theses and Dissertations

Despite the critical role algae serve as primary producers, increases or accumulation of certain algae may result in Harmful Algal Blooms (HABs). Algal toxins from these blooms contribute significantly to incidences of food borne illness, and evidence suggests HABs are expanding in frequency and distribution. Mitigation of these HABs without knowledge of the ecological purpose and biochemical regulation of their toxins is highly unlikely. The production, function, and potential of secondary metabolites produced by the dinoflagellates Karenia brevis and Pyrodinium bahamense, were investigated.

Brevetoxins were demonstrated by two different methods to localize within the cytosol of Karenia brevis. …


A Paleoclimate Modeling Experiment To Calculate The Soil Carbon Respiration Flux For The Paleocene-Eocene Thermal Maximum, David M. Tracy Jan 2012

A Paleoclimate Modeling Experiment To Calculate The Soil Carbon Respiration Flux For The Paleocene-Eocene Thermal Maximum, David M. Tracy

Masters Theses 1911 - February 2014

The Paleocene-Eocene Thermal Maximum (PETM) (55 million years ago) stands as the largest in a series of extreme warming (hyperthermal) climatic events, which are analogous to the modern day increase in greenhouse gas concentrations. Orbitally triggered (Lourens et al., 2005, Galeotti et al., 2010), the PETM is marked by a large (-3‰) carbon isotope excursion (CIE). Hypothesized to be methane driven, Zeebe et al., (2009) noted that a methane based release would only account for 3.5°C of warming. An isotopically heavier carbon, such as that of soil and C3 plants, has the potential to account for the …


Spatial And Temporal Variations In The Air-Sea Carbon Dioxide Fluxes Of Florida Bay, Christopher Michael Dufore Nov 2011

Spatial And Temporal Variations In The Air-Sea Carbon Dioxide Fluxes Of Florida Bay, Christopher Michael Dufore

USF Tampa Graduate Theses and Dissertations

The flux of CO2 between the ocean and the atmosphere is an important measure in determining local, global, and regional, as well as short term and long term carbon budgets. In this study, air-sea CO2 fluxes measured using a floating chamber were used to examine the spatial and temporal variability of CO2 fluxes in Florida Bay. Measurements of dissolved inorganic carbon and total alkalinity obtained concurrently with chamber measurements of CO2 flux allowed calculation of ΔpCO2 from flux measurements obtained at zero wind velocity. Floating chamber measurements of ΔpCO2 were subsequently coupled with wind speed data to provide a simple …


Do Wind Turbines Affect Weather Conditions?: A Case Study In Indiana, Meghan F. Henschen, Brittany Herrholtz, Lacey Rhudy, Kathryn Demchak, Brian Doogs, Joshua Holland, Erik Larson, Johnny Martin, Matthew Rudkin Jul 2011

Do Wind Turbines Affect Weather Conditions?: A Case Study In Indiana, Meghan F. Henschen, Brittany Herrholtz, Lacey Rhudy, Kathryn Demchak, Brian Doogs, Joshua Holland, Erik Larson, Johnny Martin, Matthew Rudkin

The Journal of Purdue Undergraduate Research

Wind turbines are becoming increasingly widespread in the United States as the world looks for cleaner sources of energy. Scientists, policymakers, and citizens have strong opinions regarding the positive and negative effects of wind energy projects, and there is a great deal of misinformation about wind energy circulating on the Web and other media sources. The purpose of this study is to gain a better understanding of how the rotation of hundreds of turbines can influence local weather conditions within a wind farm and in the surrounding areas. This experiment measures temperature, atmospheric pressure, wind speed, wind direction, relative humidity, …


Open Ocean Dms Air/Sea Fluxes Over The Eastern South Pacific Ocean, C. A. Marandino, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman Jan 2009

Open Ocean Dms Air/Sea Fluxes Over The Eastern South Pacific Ocean, C. A. Marandino, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Air/sea fluxes of dimethylsulfide (DMS) were measured by eddy correlation over the Eastern South Pacific Ocean during January 2006. The cruise track extended from Manzanillo, Mexico, along 110 degrees W, to Punta Arenas, Chile. Bulk air and surface ocean DMS levels were also measured and gas transfer coefficients (k(DMS)) were computed. Air and seawater DMS measurements were made using chemical ionization mass spectrometry (API-CIMS) and a gas/liquid membrane equilibrator. Mean surface seawater DMS concentrations were 3.8 +/- 2.2 nM and atmospheric mixing ratios were 340 +/- 370 ppt. The air/sea flux of DMS was uniformly out of the ocean, with …


A Chemical Ionization Mass Spectrometer For Continuous Underway Shipboard Analysis Of Dimethylsulfide In Near-Surface Seawater, Eric S. Saltzman, Warren J. De Bruyn, M. J. Lawler, Christa Marandino, C. A. Mccormick Jan 2009

A Chemical Ionization Mass Spectrometer For Continuous Underway Shipboard Analysis Of Dimethylsulfide In Near-Surface Seawater, Eric S. Saltzman, Warren J. De Bruyn, M. J. Lawler, Christa Marandino, C. A. Mccormick

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A compact, low-cost atmospheric pressure, chemical ionization mass spectrometer ('mini-CIMS') has been developed for continuous underway shipboard measurements of dimethylsulfide (DMS) in seawater. The instrument was used to analyze DMS in air equilibrated with flowing seawater across a porous Teflon membrane equilibrator. The equilibrated gas stream was diluted with air containing an isotopically-labeled internal standard. DMS is ionized at atmospheric pressure via proton transfer from water vapor, then declustered, mass filtered via quadrupole mass spectrometry, and detected with an electron multiplier. The instrument described here is based on a low-cost residual gas analyzer (Stanford Research Systems), which has been modified …


Dms Air/Sea Flux And Gas Transfer Coefficients From The North Atlantic Summertime Coccolithophore Bloom, Christa Marandino, Warren J. De Bruyn, Scott Miller, Eric S. Saltzman Jan 2008

Dms Air/Sea Flux And Gas Transfer Coefficients From The North Atlantic Summertime Coccolithophore Bloom, Christa Marandino, Warren J. De Bruyn, Scott Miller, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Dimethylsulfide (DMS) atmospheric and oceanic concentrations and eddy covariance air/sea fluxes were measured over the N. Atlantic Ocean during July 2007 from Iceland to Woods Hole, MA, USA. Seawater DMS levels north of 55 degrees N ranged from 3 to 17 nM, with variability related to the satellite-derived distributions of coccoliths and to a lesser extent, chlorophyll. For the most intense bloom region southwest of Iceland, DMS air/sea fluxes were as high as 300 mu mol m(-2) d(-1), larger than current model estimates. The observations imply that gas exchange coefficients in this region are significantly greater than those estimated using …


Eddy Correlation Measurements Of The Air/Sea Flux Of Dimethylsulfide Over The North Pacific Ocean, Christa A. Marandino, Warren J. De Bruyn, Scott D. Miller, Eric S. Saltzman Jan 2007

Eddy Correlation Measurements Of The Air/Sea Flux Of Dimethylsulfide Over The North Pacific Ocean, Christa A. Marandino, Warren J. De Bruyn, Scott D. Miller, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Shipboard measurements of air/sea fluxes and sea surface concentrations of dimethylsulfide (DMS) were made over the tropical and midlatitude North Pacific Ocean. Atmospheric pressure chemical ionization mass spectrometry was used to measure DMS levels in ambient air and in air equilibrated with surface seawater drawn from a depth of 5 m. Air/sea fluxes were obtained using eddy covariance. Corrections and uncertainties involved in the calculation of fluxes from shipboard data are discussed. The surface ocean DMS concentrations measured during this study ranged from 1 to 10 nM, and atmospheric mixing ratios ranged from 20 to 1000 ppt. Air/sea fluxes ranged …


Oceanic Uptake And The Global Atmospheric Acetone Budget, Christa Marandino, Warren J. De Bruyn, Scott Miller, M. J. Prather, Eric S. Saltzman Jan 2005

Oceanic Uptake And The Global Atmospheric Acetone Budget, Christa Marandino, Warren J. De Bruyn, Scott Miller, M. J. Prather, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this study, direct measurements of the air/ sea flux of acetone were made over the North Pacific Ocean. The results demonstrate that the net flux of acetone is into, rather than out of the oceans. The extrapolated global ocean uptake of 48 Tg yr(-1) requires a major revision of the atmospheric acetone budget. This result is consistent with a recent reevaluation of acetone photodissociation quantum yields.


Atmospheric Variability Of Methyl Chloride During The Last 300 Years From An Antarctic Ice Core And Firn Air, M. Aydin, Eric S. Saltzman, Warren J. De Bruyn, S. A. Montzka, J. H. Butler, M. Battle Jan 2004

Atmospheric Variability Of Methyl Chloride During The Last 300 Years From An Antarctic Ice Core And Firn Air, M. Aydin, Eric S. Saltzman, Warren J. De Bruyn, S. A. Montzka, J. H. Butler, M. Battle

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Measurements of methyl chloride (CH3Cl) in Antarctic polar ice and firn air are used to describe the variability of atmospheric CH3Cl during the past 300 years. Firn air results from South Pole and Siple Dome suggest that the atmospheric abundance of CH3Cl increased by about 10% in the 50 years prior to 1990. Ice core measurements from Siple Dome provide evidence for a cyclic natural variability on the order of 10%, with a period of about 110 years in phase with the 20th century rise inferred from firn air. Thus, the CH3Cl increase measured in firn air may largely be …


The Aqueous Phase Yield Of Alkyl Nitrates From Roo+No: Implications For Photochemical Production In Seawater, Elizabeth E. Dahl, Eric S. Saltzman, Warren J. De Bruyn Jan 2003

The Aqueous Phase Yield Of Alkyl Nitrates From Roo+No: Implications For Photochemical Production In Seawater, Elizabeth E. Dahl, Eric S. Saltzman, Warren J. De Bruyn

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Alkyl nitrates have been observed in remote oceanic regions of the troposphere and in the surface ocean. The mechanism for their production in the oceans is not known. A likely source is the reaction of ROO + NO (where R is an alkyl group). Steady-state laboratory experiments show that alkyl nitrates are produced in the aqueous phase via this reaction, with branching ratios of 0.23 +/- 0.04, 0.67 +/- 0.03, and 0.71 +/- 0.04 for methyl, ethyl, and propyl nitrate respectively. The branching ratios in aqueous solution are significantly higher than in the gas phase. Irradiation of surface seawaters yield …