Open Access. Powered by Scholars. Published by Universities.®

Dynamical Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

Portland State University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 12 of 12

Full-Text Articles in Dynamical Systems

Birkhoff Summation Of Irrational Rotations: A Surprising Result For The Golden Mean, Heather Moore Mar 2024

Birkhoff Summation Of Irrational Rotations: A Surprising Result For The Golden Mean, Heather Moore

University Honors Theses

This thesis presents a surprising result that the difference in a certain sums of constant rotations by the golden mean approaches exactly 1/5. Specifically, we focus on the Birkhoff sums of these rotations, with the number of terms equal to squared Fibonacci numbers. The proof relies on the properties of continued fraction approximants, Vajda's identity and the explicit formula for the Fibonacci numbers.


Analyzing Network Topology For Ddos Mitigation Using The Abelian Sandpile Model, Bhavana Panchumarthi, Monroe Ame Stephenson Aug 2020

Analyzing Network Topology For Ddos Mitigation Using The Abelian Sandpile Model, Bhavana Panchumarthi, Monroe Ame Stephenson

altREU Projects

A Distributed Denial of Service (DDoS) is a cyber attack, which is capable of triggering a cascading failure in the victim network. While DDoS attacks come in different forms, their general goal is to make a network's service unavailable to its users. A common, but risky, countermeasure is to blackhole or null route the source, or the attacked destination. When a server becomes a blackhole, or referred to as the sink in the paper, the data that is assigned to it "disappears" or gets deleted. Our research shows how mathematical modeling can propose an alternative blackholing strategy that could improve …


Ideals, Big Varieties, And Dynamic Networks, Ian H. Dinwoodie Sep 2018

Ideals, Big Varieties, And Dynamic Networks, Ian H. Dinwoodie

Mathematics and Statistics Faculty Publications and Presentations

The advantage of using algebraic geometry over enumeration for describing sets related to attractors in large dynamic networks from biology is advocated. Examples illustrate the gains.


Full State Revivals In Linearly Coupled Chains With Commensurate Eigenspectra, J. J. P. Veerman, Jovan Petrovic Jan 2016

Full State Revivals In Linearly Coupled Chains With Commensurate Eigenspectra, J. J. P. Veerman, Jovan Petrovic

Mathematics and Statistics Faculty Publications and Presentations

Coherent state transfer is an important requirement in the construction of quantum computer hardware. The state transfer can be realized by linear next-neighbour-coupled finite chains. Starting from the commensurability of chain eigenvalues as the general condition of periodic dynamics, we find chains that support full periodic state revivals. For short chains, exact solutions are found analytically by solving the inverse eigenvalue problem to obtain the coupling coefficients between chain elements. We apply the solutions to design optical waveguide arrays and perform numerical simulations of light propagation thorough realistic waveguide structures. Applications of the presented method to the realization of a …


Signal Velocity In Oscillator Arrays, Carlos E. Cantos, David K. Hammond, J. J. P. Veerman Jan 2016

Signal Velocity In Oscillator Arrays, Carlos E. Cantos, David K. Hammond, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles. The model considers asymmetric, linear, decentralized dynamics, where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. We first derive necessary and sufficient conditions for asymptotic stability, then derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocities c+>0 and c−f(x−c+t) in the direction …


Tridiagonal Matrices And Boundary Conditions, J. J. P. Veerman, David K. Hammond Jan 2016

Tridiagonal Matrices And Boundary Conditions, J. J. P. Veerman, David K. Hammond

Mathematics and Statistics Faculty Publications and Presentations

We describe the spectra of certain tridiagonal matrices arising from differential equations commonly used for modeling flocking behavior. In particular we consider systems resulting from allowing an arbitrary boundary condition for the end of a one-dimensional flock. We apply our results to demonstrate how asymptotic stability for consensus and flocking systems depends on the imposed boundary condition.


A Posteriori Eigenvalue Error Estimation For The Schrödinger Operator With The Inverse Square Potential, Hengguang Li, Jeffrey S. Ovall Jul 2015

A Posteriori Eigenvalue Error Estimation For The Schrödinger Operator With The Inverse Square Potential, Hengguang Li, Jeffrey S. Ovall

Mathematics and Statistics Faculty Publications and Presentations

We develop an a posteriori error estimate of hierarchical type for Dirichlet eigenvalue problems of the form (−∆ + (c/r) 2 )ψ = λψ on bounded domains Ω, where r is the distance to the origin, which is assumed to be in Ω. This error estimate is proven to be asymptotically identical to the eigenvalue approximation error on a family of geometrically-graded meshes. Numerical experiments demonstrate this asymptotic exactness in practice.


Transients In The Synchronization Of Oscillator Arrays, Carlos E. Cantos, J. J. P. Veerman Oct 2014

Transients In The Synchronization Of Oscillator Arrays, Carlos E. Cantos, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

The purpose of this note is threefold. First we state a few conjectures that allow us to rigorously derive a theory which is asymptotic in N (the number of agents) that describes transients in large arrays of (identical) linear damped harmonic oscillators in R with completely decentralized nearest neighbor interaction. We then use the theory to establish that in a certain range of the parameters transients grow linearly in the number of agents (and faster outside that range). Finally, in the regime where this linear growth occurs we give the constant of proportionality as a function of the signal velocities …


Exact Tests For Singular Network Data, Ian H. Dinwoodie, Kruti Pandya Jul 2014

Exact Tests For Singular Network Data, Ian H. Dinwoodie, Kruti Pandya

Mathematics and Statistics Faculty Publications and Presentations

We propose methodology for exact statistical tests of hypotheses for models of network dynamics. The methodology formulates Markovian exponential families, then uses sequential importance sampling to compute expectations within basins of attraction and within level sets of a sufficient statistic for an over-dispersion model. Comparisons of hypotheses can be done conditional on basins of attraction. Examples are presented.


Vanishing Configurations In Network Dynamics With Asynchronous Updates, Ian H. Dinwoodie May 2014

Vanishing Configurations In Network Dynamics With Asynchronous Updates, Ian H. Dinwoodie

Mathematics and Statistics Faculty Publications and Presentations

We consider Boolean dynamics for biological networks where stochasticity is introduced through asynchronous updates. An exact method is given for finding states which can reach a steady state with positive probability, and a method is given for finding states which cannot reach other steady states. These methods are based on computational commutative algebra. The algorithms are applied to dynamics of a cell survival network to determine node assignments that exclude termination in a cancerous state


Reconstructability Analysis Of Elementary Cellular Automata, Martin Zwick, Hui Shi Mar 2010

Reconstructability Analysis Of Elementary Cellular Automata, Martin Zwick, Hui Shi

Systems Science Friday Noon Seminar Series

Reconstructability analysis is a method to determine whether a multivariate relation, defined set- or information-theoretically, is decomposable with or without loss (reduction in constraint) into lower ordinality relations. Set-theoretic reconstructability analysis (SRA) is used to characterize the mappings of elementary cellular automata. The degree of lossless decomposition possible for each mapping is more effective than the λ parameter (Walker & Ashby, Langton) as a predictor of chaotic dynamics.

Complete SRA yields not only the simplest lossless structure but also a vector of losses of all decomposed structures, indexed by parameter, τ. This vector subsumes λ, Wuensche’s Z parameter, and Walker …


Geometrical Models For Grain Dynamics, Giovani L. Vasconcelos, J. J. P. Veerman Jan 1999

Geometrical Models For Grain Dynamics, Giovani L. Vasconcelos, J. J. P. Veerman

Mathematics and Statistics Faculty Publications and Presentations

We study models for the gravity-driven, dissipative motion of a single grain on an inclined rough surface. Imposing some conditions on the momentum loss due to the collisions between the particle and the surface, we arrive at a class of models in which the grain dynamics is described by one-dimensional maps. The dynamics of these maps is studied in detail. We prove the existence of various dynamical phases and show that the presence of these phases is independent of the restitution law (within the class considered).