Open Access. Powered by Scholars. Published by Universities.®

Oil, Gas, and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Oil, Gas, and Energy

Photovoltage Enhancement For Stable Perovskite Solar Cells With A Temperature-Controlled Grain Growth Technique, Luis Eduardo Valerio Jan 2020

Photovoltage Enhancement For Stable Perovskite Solar Cells With A Temperature-Controlled Grain Growth Technique, Luis Eduardo Valerio

Open Access Theses & Dissertations

By performing strong characterizations methods, one can begin to fully understand the chemistry and composition behind a great performing perovskite solar cell. Understanding how the interaction between layers inside a solar cell is driven by the temperature and overall environment is a key element to improve the fabrication process and overall efficiency of such cells. This Thesis will present a study of the hybrid organic-inorganic, mixed-cation, mixed-halide, temperature and thickness-controlled perovskite solar cell. A constant power conversion efficiency (PCE) ranging between 15-17% and an open circuit voltage V¬oc above 1.05 V for a wide-band gap perovskite cell is presented.


Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani Jan 2017

Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani

Browse all Theses and Dissertations

Hybrid perovskite photovoltaic materials are currently the most promising functional materials for solar cell applications with efficiency reaching to those of more conventional materials such as silicon. Using self-assembled monolayers between photovoltaic materials and electrodes is a method for improving the stability and functionality. Recent experiments have shown that using 4-mercaptobenzoic acid and pentafluorobenzenethiol monolayers bridging lead iodide hybrid perovskite photovoltaic materials and electrodes result in improved stability and efficiency. The details of monolayer assembly, molecular adsorption configuration, and resulting modification of electronic properties are important characteristics related to solar cell performance. These characteristics can be obtained through accurate computer …


Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate May 2015

Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate

Graduate Theses and Dissertations

Passivating silicon solar cell surfaces is critical to fabricating very high efficiency and low cost photovoltaic devices. The sun-facing surface of the solar cell, known as the emitter, is particularly important when designing a solar cell. This work focused first on an alternative method of forming the emitter of silicon solar cells, and secondly on a method for improving the surface passivation of both these non-traditional and standard n-type solar cells.

Top-down aluminum induced crystallization (TAIC) was used for forming a polycrystalline silicon layer from amorphous silicon using aluminum to catalyze the crystallization at much lower temperatures than otherwise possible. …


Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley Dec 2014

Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley

UNLV Theses, Dissertations, Professional Papers, and Capstones

Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials.

For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These …


Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar Apr 2014

Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar

Open Access Theses

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques.

Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the …


Economic And Policy Analysis For Solar Pv Systems In Indiana, Jinho Jung Apr 2014

Economic And Policy Analysis For Solar Pv Systems In Indiana, Jinho Jung

Open Access Theses

In recent years, the energy market in the US and globally is expanding the production of renewable energy. With other energy sources, solar energy for electricity is also expanding in the US. Indiana is one of the states expanding solar energy with solar PV systems. However, the economics of solar PV systems in Indiana have not been analyzed and electricity customers in Indiana are not informed enough about the economics of solar PV systems. Therefore, we conduct benefit cost analysis with several uncertain input variables to determine the economics of adopting solar PV systems in Indiana based on policy instruments …


Growth And Analysis Of Micro And Nano Cdte Arrays For Solar Cell Applications, Brandon Adrian Aguirre Jan 2014

Growth And Analysis Of Micro And Nano Cdte Arrays For Solar Cell Applications, Brandon Adrian Aguirre

Open Access Theses & Dissertations

CdTe is an excellent material for infrared detectors and photovoltaic applications. The efficiency of CdTe/CdS solar cells has increased very rapidly in the last 3 years to ~20% but is still below the maximum theoretical value of 30%. Although the short-circuit current density is close to its maximum of 30 mA/cm2, the open circuit voltage has potential to be increased further to over 1 Volt. The main limitation that prevents further increase in the open-circuit voltage and therefore efficiency is the high defect density in the CdTe absorber layer. Reducing the defect density will increase the open-circuit voltage above 1 …


A Computation Model For Nanoantenna-Based Solar Cell With High Conversion Efficiency, Yiyan Li, Ke-Xun Sun, Yingtao Jiang Apr 2013

A Computation Model For Nanoantenna-Based Solar Cell With High Conversion Efficiency, Yiyan Li, Ke-Xun Sun, Yingtao Jiang

College of Engineering: Graduate Celebration Programs

  • Build a model of spiral nanoantenna and an antenna
    array based solar cell collector.
  • Using Rao-Wilton-Glisson (RWG) basis functions to
    simulate the spiral nanoantennas.
  • We calculate the frequency response of the radiation
    gain as the indicator of receiving bandwidth which is a
    key factor in conversion efficiency.


Improving The Efficiency Of Organic Solar Cells By Varying The Material Concentration In The Photoactive Layer, Kevin Anthony Latimer Jul 2011

Improving The Efficiency Of Organic Solar Cells By Varying The Material Concentration In The Photoactive Layer, Kevin Anthony Latimer

Electrical & Computer Engineering Theses & Dissertations

Polymer-fullerene bulk heterojunction solar cells have been a rapidly improving technology over the past decade. To further improve the relatively low energy conversion efficiencies of these solar cells, several modifications need to be made to the overall device structure. Emerging technologies include cells that are fabricated with interfacial layers to facilitate charge transport, and tandem structures are being introduced to harness the absorption spectrum of polymers with varying bandgap energies.

When new structures are implemented, each layer of the cell must be optimized in order for the entire device to function efficiently. The most volatile layer of these devices is …


Hybrid Inorganic/Organic Nanostructured Tandem Solar Cells: Simulation And Fabrication Methods, Patrick Michael Boland Jr. Jan 2011

Hybrid Inorganic/Organic Nanostructured Tandem Solar Cells: Simulation And Fabrication Methods, Patrick Michael Boland Jr.

Electrical & Computer Engineering Theses & Dissertations

Organic solar cell technologies continue to be an extremely active area of scientific research. With their promise of providing low-cost, easily-processable, multi-application photovoltaics, these devices could very possibly be the most viable and practical form of renewable energy among many being explored. However, significant technological obstacles remain that must be overcome if this technology is to successfully realize the goal of providing abundant energy while simultaneously reducing dependence on fossil fuel-based sources. Compared with inorganic solar photovoltaics, power conversion efficiencies in organics are still too low to compete economically.

Much research has been accomplished over the past three decades in …


Hydrogen In Non-Crystalline Materials: From Solar Cells To Hydrogen Storage, Anatolii Shkrebtii Aug 2009

Hydrogen In Non-Crystalline Materials: From Solar Cells To Hydrogen Storage, Anatolii Shkrebtii

UNLV Renewable Energy Symposium

The 3rd Annual Renewable Energy Symposium took place on the UNLV campus August 11 & 12. The event focused on renewable energy production in Nevada, the US Southwest, and renewable research projects nationwide. The event was a great success with over 200 individuals in attendance.


Nellis Air Force Base Solar Array, University Of Nevada Las Vegas Aug 2008

Nellis Air Force Base Solar Array, University Of Nevada Las Vegas

UNLV Renewable Energy Symposium

The 2008 UNLV Renewable Energy Symposium was presented by the Office of Strategic Energy Programs and co-sponsored by the Division of Research and Graduate Studies on August 20, 2008 on the UNLV campus.

The event focused on renewable energy production in Nevada, the US Southwest, and renewable research projects nationwide. It was a great opportunity for anyone working on renewable projects to collaborate with others in this field and exchange information. Over 230 individuals attended the event this year.