Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 137

Full-Text Articles in Theory and Algorithms

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin May 2023

Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin

All Dissertations

Inverse problems involve extracting the internal structure of a physical system from noisy measurement data. In many fields, the Bayesian inference is used to address the ill-conditioned nature of the inverse problem by incorporating prior information through an initial distribution. In the nonparametric Bayesian framework, surrogate models such as Gaussian Processes or Deep Neural Networks are used as flexible and effective probabilistic modeling tools to overcome the high-dimensional curse and reduce computational costs. In practical systems and computer models, uncertainties can be addressed through parameter calibration, sensitivity analysis, and uncertainty quantification, leading to improved reliability and robustness of decision and …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


A Hierarchical Approach To Improve The Ant Colony Optimization Algorith, Bryan J. Fischer Jan 2023

A Hierarchical Approach To Improve The Ant Colony Optimization Algorith, Bryan J. Fischer

EWU Masters Thesis Collection

The ant colony optimization algorithm (ACO) is a fast heuristic-based method for finding favorable solutions to the traveling salesman problem (TSP). When the data set reaches larger values however, the ACO runtime increases dramatically. As a result, clustering nodes into groups is an effective way to reduce the size of the problem while leveraging the advantages of the ACO algorithm. The method for recombining groups of nodes is explored by treating the graph as a hierarchy of clusters, and modifying the original ACO heuristic to operate on a hypergraph. This method of using hierarchical clustering is significantly faster than the …


Dynamic Function Learning Through Control Of Ensemble Systems, Wei Zhang, Vignesh Narayanan, Jr-Shin Li Jan 2023

Dynamic Function Learning Through Control Of Ensemble Systems, Wei Zhang, Vignesh Narayanan, Jr-Shin Li

Publications

Learning tasks involving function approximation are preva- lent in numerous domains of science and engineering. The underlying idea is to design a learning algorithm that gener- ates a sequence of functions converging to the desired target function with arbitrary accuracy by using the available data samples. In this paper, we present a novel interpretation of iterative function learning through the lens of ensemble dy- namical systems, with an emphasis on establishing the equiv- alence between convergence of function learning algorithms and asymptotic behavior of ensemble systems. In particular, given a set of observation data in a function learning task, we …


Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh Oct 2022

Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh

Doctoral Dissertations

Hyperspectral imaging has been deployed in earth and planetary remote sensing, and has contributed the development of new methods for monitoring the earth environment and new discoveries in planetary science. It has given scientists and engineers a new way to observe the surface of earth and planetary bodies by measuring the spectroscopic spectrum at a pixel scale. Hyperspectal images require complex processing before practical use. One of the important goals of hyperspectral imaging is to obtain the images of reflectance spectrum. A raw image obtained by hyperspectral remote sensing usually undergoes conversion to a physical quantity representing the intensity of …


Analysis Of A Quantum Attack On The Blum-Micali Pseudorandom Number Generator, Tingfei Feng Jun 2022

Analysis Of A Quantum Attack On The Blum-Micali Pseudorandom Number Generator, Tingfei Feng

Mathematical Sciences Technical Reports (MSTR)

In 2012, Guedes, Assis, and Lula proposed a quantum attack on a pseudorandom number generator named the Blum-Micali Pseudorandom number generator. They claimed that the quantum attack can outperform classical attacks super-polynomially. However, this paper shows that the quantum attack cannot get the correct seed and provides another corrected algorithm that is in exponential time but still faster than the classical attack. Since the original classical attacks are in exponential time, the Blum-Micali pseudorandom number generator would be still quantum resistant.


A Novel Method For Sensitivity Analysis Of Time-Averaged Chaotic System Solutions, Christian A. Spencer-Coker May 2022

A Novel Method For Sensitivity Analysis Of Time-Averaged Chaotic System Solutions, Christian A. Spencer-Coker

Theses and Dissertations

The direct and adjoint methods are to linearize the time-averaged solution of bounded dynamical systems about one or more design parameters. Hence, such methods are one way to obtain the gradient necessary in locally optimizing a dynamical system’s time-averaged behavior over those design parameters. However, when analyzing nonlinear systems whose solutions exhibit chaos, standard direct and adjoint sensitivity methods yield meaningless results due to time-local instability of the system. The present work proposes a new method of solving the direct and adjoint linear systems in time, then tests that method’s ability to solve instances of the Lorenz system that exhibit …


The Primitive Root Problem: A Problem In Bqp, Shixin Wu May 2022

The Primitive Root Problem: A Problem In Bqp, Shixin Wu

Mathematical Sciences Technical Reports (MSTR)

Shor’s algorithm proves that the discrete logarithm problem is in BQP. Based on his algorithm, we prove that the primitive root problem, a problem that verifies if some integer g is a primitive root modulo p where p is the largest prime number smaller than 2n for a given n, which is assumed to be harder than the discrete logarithm problem, is in BQP by using an oracle quantum Turing machine.


Data And Algorithmic Modeling Approaches To Count Data, Andraya Hack May 2022

Data And Algorithmic Modeling Approaches To Count Data, Andraya Hack

Honors College Theses

Various techniques are used to create predictions based on count data. This type of data takes the form of a non-negative integers such as the number of claims an insurance policy holder may make. These predictions can allow people to prepare for likely outcomes. Thus, it is important to know how accurate the predictions are. Traditional statistical approaches for predicting count data include Poisson regression as well as negative binomial regression. Both methods also have a zero-inflated version that can be used when the data has an overabundance of zeros. Another procedure is to use computer algorithms, also known as …


A Novel Data Lineage Model For Critical Infrastructure And A Solution To A Special Case Of The Temporal Graph Reachability Problem, Ian Moncur May 2022

A Novel Data Lineage Model For Critical Infrastructure And A Solution To A Special Case Of The Temporal Graph Reachability Problem, Ian Moncur

Graduate Theses and Dissertations

Rapid and accurate damage assessment is crucial to minimize downtime in critical infrastructure. Dependency on modern technology requires fast and consistent techniques to prevent damage from spreading while also minimizing the impact of damage on system users. One technique to assist in assessment is data lineage, which involves tracing a history of dependencies for data items. The goal of this thesis is to present one novel model and an algorithm that uses data lineage with the goal of being fast and accurate. In function this model operates as a directed graph, with the vertices being data items and edges representing …


Numerical Treatment For Special Type Of Mixed Linear Delay Volterra Integro-Differential Equations, Atheer J. Kadhim Feb 2022

Numerical Treatment For Special Type Of Mixed Linear Delay Volterra Integro-Differential Equations, Atheer J. Kadhim

Emirates Journal for Engineering Research

The idea of research is a representation of the nonlinear pseudo-random generators using state-space equations that is not based on the usual description as shift register synthesis but in terms of matrices. Different types of nonlinear pseudo-random generators with their algorithms have been applied in order to investigate the output pseudo-random sequences. Moreover, two examples are given for conciliated the results of this representation.


The Nature Of Numbers: Real Computing, Bradley J. Lucier Jan 2022

The Nature Of Numbers: Real Computing, Bradley J. Lucier

Journal of Humanistic Mathematics

While studying the computable real numbers as a professional mathematician, I came to see the computable reals, and not the real numbers as usually presented in undergraduate real analysis classes, as the natural culmination of my evolving understanding of numbers as a schoolchild. This paper attempts to trace and explain that evolution. The first part recounts the nature of numbers as they were presented to us grade-school children. In particular, the introduction of square roots induced a step change in my understanding of numbers. Another incident gave me insight into the brilliance of Alan Turing in his paper introducing both …


Robust Error Estimation Based On Factor-Graph Models For Non-Line-Of-Sight Localization, O. Arda Vanli, Clark N. Taylor Jan 2022

Robust Error Estimation Based On Factor-Graph Models For Non-Line-Of-Sight Localization, O. Arda Vanli, Clark N. Taylor

Faculty Publications

This paper presents a method to estimate the covariances of the inputs in a factor-graph formulation for localization under non-line-of-sight conditions. A general solution based on covariance estimation and M-estimators in linear regression problems, is presented that is shown to give unbiased estimators of multiple variances and are robust against outliers. An iteratively re-weighted least squares algorithm is proposed to jointly compute the proposed variance estimators and the state estimates for the nonlinear factor graph optimization. The efficacy of the method is illustrated in a simulation study using a robot localization problem under various process and measurement models and measurement …


A Simple Algorithm For Generating A New Two Sample Type-Ii Progressive Censoring With Applications, E. M. Shokr, Rashad Mohamed El-Sagheer, Mahmoud Mansour, H. M. Faied, B. S. El-Desouky Jan 2022

A Simple Algorithm For Generating A New Two Sample Type-Ii Progressive Censoring With Applications, E. M. Shokr, Rashad Mohamed El-Sagheer, Mahmoud Mansour, H. M. Faied, B. S. El-Desouky

Basic Science Engineering

In this article, we introduce a simple algorithm to generating a new type-II progressive censoring scheme for two samples. It is observed that the proposed algorithm can be applied for any continues probability distribution. Moreover, the description model and necessary assumptions are discussed. In addition, the steps of simple generation algorithm along with programming steps are also constructed on real example. The inference of two Weibull Frechet populations are discussed under the proposed algorithm. Both classical and Bayesian inferential approaches of the distribution parameters are discussed. Furthermore, approximate confidence intervals are constructed based on the asymptotic distribution of the maximum …


Interpretable Design Of Reservoir Computing Networks Using Realization Theory, Wei Miao, Vignesh Narayanan, Jr-Shin Li Jan 2022

Interpretable Design Of Reservoir Computing Networks Using Realization Theory, Wei Miao, Vignesh Narayanan, Jr-Shin Li

Publications

The reservoir computing networks (RCNs) have been successfully employed as a tool in learning and complex decision-making tasks. Despite their efficiency and low training cost, practical applications of RCNs rely heavily on empirical design. In this article, we develop an algorithm to design RCNs using the realization theory of linear dynamical systems. In particular, we introduce the notion of α-stable realization and provide an efficient approach to prune the size of a linear RCN without deteriorating the training accuracy. Furthermore, we derive a necessary and sufficient condition on the irreducibility of the number of hidden nodes in linear RCNs based …


Decoding Cyclic Codes Via Gröbner Bases, Eduardo Sosa Jan 2022

Decoding Cyclic Codes Via Gröbner Bases, Eduardo Sosa

Honors Theses

In this paper, we analyze the decoding of cyclic codes. First, we introduce linear and cyclic codes, standard decoding processes, and some standard theorems in coding theory. Then, we will introduce Gr¨obner Bases, and describe their connection to the decoding of cyclic codes. Finally, we go in-depth into how we decode cyclic codes using the key equation, and how a breakthrough by A. Brinton Cooper on decoding BCH codes using Gr¨obner Bases gave rise to the search for a polynomial-time algorithm that could someday decode any cyclic code. We discuss the different approaches taken toward developing such an algorithm and …


Computer Program Simulation Of A Quantum Turing Machine With Circuit Model, Shixin Wu Dec 2021

Computer Program Simulation Of A Quantum Turing Machine With Circuit Model, Shixin Wu

Mathematical Sciences Technical Reports (MSTR)

Molina and Watrous present a variation of the method to simulate a quantum Turing machine employed in Yao’s 1995 publication “Quantum Circuit Complexity”. We use a computer program to implement their method with linear algebra and an additional unitary operator defined to complete the details. Their method is verified to be correct on a quantum Turing machine.


Multi-Valued Solutions For The Equation Of Motion, Darcy-Jordan Model, As A Cauchy Problem: A Shocking Event, Chandler Shimp Oct 2021

Multi-Valued Solutions For The Equation Of Motion, Darcy-Jordan Model, As A Cauchy Problem: A Shocking Event, Chandler Shimp

Master's Theses

Shocks are physical phenomenon that occur quite often around us. In this thesis we examine the occurrence of shocks in finite amplitude acoustic waves from a numerical perspective. These waves, or jump discontinuities, yield ill-behaved solutions when solved numerically. This study takes on the challenge of finding both single- and multi-valued solutions.

The previously unsolved problem in this study is the representation of the Equation of Motion (EoM) in the form of the Darcy-Jordan model (DJM) and expressed as a dimensionless IVP Cauchy problem. Prior attempts to solve have resulted only in implicit solutions or explicit solutions with certain initial …


Ensemble Data Fitting For Bathymetric Models Informed By Nominal Data, Samantha Zambo Aug 2021

Ensemble Data Fitting For Bathymetric Models Informed By Nominal Data, Samantha Zambo

Dissertations

Due to the difficulty and expense of collecting bathymetric data, modeling is the primary tool to produce detailed maps of the ocean floor. Current modeling practices typically utilize only one interpolator; the industry standard is splines-in-tension.

In this dissertation we introduce a new nominal-informed ensemble interpolator designed to improve modeling accuracy in regions of sparse data. The method is guided by a priori domain knowledge provided by artificially intelligent classifiers. We recast such geomorphological classifications, such as ‘seamount’ or ‘ridge’, as nominal data which we utilize as foundational shapes in an expanded ordinary least squares regression-based algorithm. To our knowledge …


Multilateration Index., Chip Lynch Aug 2021

Multilateration Index., Chip Lynch

Electronic Theses and Dissertations

We present an alternative method for pre-processing and storing point data, particularly for Geospatial points, by storing multilateration distances to fixed points rather than coordinates such as Latitude and Longitude. We explore the use of this data to improve query performance for some distance related queries such as nearest neighbor and query-within-radius (i.e. “find all points in a set P within distance d of query point q”). Further, we discuss the problem of “Network Adequacy” common to medical and communications businesses, to analyze questions such as “are at least 90% of patients living within 50 miles of a covered emergency …


Representation Of Nonlinear Pseudo-Random Generators Using State-Space Equations, Raghad K. Salih Jul 2021

Representation Of Nonlinear Pseudo-Random Generators Using State-Space Equations, Raghad K. Salih

Emirates Journal for Engineering Research

The idea of research is a representation of the nonlinear pseudo-random generators using state-space equations that is not based on the usual description as shift register synthesis but in terms of matrices. Different types of nonlinear pseudo-random generators with their algorithms have been applied in order to investigate the output pseudo-random sequences. Moreover, two examples are given for conciliated the results of this representation.


An Efficient Transformer-Based Model For Vietnamese Punctuation Prediction, Hieu Tran, Cuong V. Dinh, Hong Quang Pham, Binh T. Nguyen Jul 2021

An Efficient Transformer-Based Model For Vietnamese Punctuation Prediction, Hieu Tran, Cuong V. Dinh, Hong Quang Pham, Binh T. Nguyen

Research Collection School Of Computing and Information Systems

In both formal and informal texts, missing punctuation marks make the texts confusing and challenging to read. This paper aims to conduct exhaustive experiments to investigate the benefits of the pre-trained Transformer-based models on two Vietnamese punctuation datasets. The experimental results show our models can achieve encouraging results, and adding Bi-LSTM or/and CRF layers on top of the proposed models can also boost model performance. Finally, our best model can significantly bypass state-of-the-art approaches on both the novel and news datasets for the Vietnamese language. It can gain the corresponding performance up to 21.45%21.45% and 18.27%18.27% in the overall F1-scores.


Negative Representability Degree Structures Of Linear Orders With Endomorphisms, Nadimulla Kasymov, Sarvar Javliyev Jun 2021

Negative Representability Degree Structures Of Linear Orders With Endomorphisms, Nadimulla Kasymov, Sarvar Javliyev

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

The structure of partially ordered sets of degrees of negative representability of linear orders with endomorphisms is studied. For these structures, the existence of incomparable, maximum and minimum degrees, infinite chains and antichains is established,and also considered connections with the concepts of reducibility of enumerations, splittable degrees and positive representetions.


The “Knapsack Problem” Workbook: An Exploration Of Topics In Computer Science, Steven Cosares Jun 2021

The “Knapsack Problem” Workbook: An Exploration Of Topics In Computer Science, Steven Cosares

Open Educational Resources

This workbook provides discussions, programming assignments, projects, and class exercises revolving around the “Knapsack Problem” (KP), which is widely a recognized model that is taught within a typical Computer Science curriculum. Throughout these discussions, we use KP to introduce or review topics found in courses covering topics in Discrete Mathematics, Mathematical Programming, Data Structures, Algorithms, Computational Complexity, etc. Because of the broad range of subjects discussed, this workbook and the accompanying spreadsheet files might be used as part of some CS capstone experience. Otherwise, we recommend that individual sections be used, as needed, for exercises relevant to a course in …


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Lecture 06: The Impact Of Computer Architectures On The Design Of Algebraic Multigrid Methods, Ulrike Yang Apr 2021

Lecture 06: The Impact Of Computer Architectures On The Design Of Algebraic Multigrid Methods, Ulrike Yang

Mathematical Sciences Spring Lecture Series

Algebraic multigrid (AMG) is a popular iterative solver and preconditioner for large sparse linear systems. When designed well, it is algorithmically scalable, enabling it to solve increasingly larger systems efficiently. While it consists of various highly parallel building blocks, the original method also consisted of various highly sequential components. A large amount of research has been performed over several decades to design new components that perform well on high performance computers. As a matter of fact, AMG has shown to scale well to more than a million processes. However, with single-core speeds plateauing, future increases in computing performance need to …


Toward Improving Understanding Of The Structure And Biophysics Of Glycosaminoglycans, Elizabeth K. Whitmore Apr 2021

Toward Improving Understanding Of The Structure And Biophysics Of Glycosaminoglycans, Elizabeth K. Whitmore

Electronic Theses and Dissertations

Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) that mediate PG bioactivities, including signal transduction, tissue morphogenesis, and matrix assembly. To understand GAG function, it is important to understand GAG structure and biophysics at atomic resolution. This is a challenge for existing experimental and computational methods because GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharides. Molecular dynamics (MD) simulations come close to overcoming this challenge but are only feasible for short GAG polymers. To address this problem, we developed an algorithm that applies conformations from unbiased all-atom explicit-solvent MD simulations of short GAG polymers …


Network-Based Analysis Of Early Pandemic Mitigation Strategies: Solutions, And Future Directions, Pegah Hozhabrierdi, Raymond Zhu, Maduakolam Onyewu, Sucheta Soundarajan Mar 2021

Network-Based Analysis Of Early Pandemic Mitigation Strategies: Solutions, And Future Directions, Pegah Hozhabrierdi, Raymond Zhu, Maduakolam Onyewu, Sucheta Soundarajan

Northeast Journal of Complex Systems (NEJCS)

Despite the large amount of literature on mitigation strategies for pandemic spread, in practice, we are still limited by naive strategies, such as lockdowns, that are not effective in controlling the spread of the disease in long term. One major reason behind adopting basic strategies in real-world settings is that, in the early stages of a pandemic, we lack knowledge of the behavior of a disease, and so cannot tailor a more sophisticated response. In this study, we design different mitigation strategies for early stages of a pandemic and perform a comprehensive analysis among them. We then propose a novel …


Modeling And Analysis Of Affiliation Networks With Subsumption, Alexey Nikolaev Feb 2021

Modeling And Analysis Of Affiliation Networks With Subsumption, Alexey Nikolaev

Dissertations, Theses, and Capstone Projects

An affiliation (or two-mode) network is an abstraction commonly used for representing systems with group interactions. It consists of a set of nodes and a set of their groupings called affiliations. We introduce the notion of affiliation network with subsumption, in which no affiliation can be a subset of another. A network with this property can be modeled by an abstract simplicial complex whose facets are the affiliations of the network.

We introduce a new model for generating affiliation networks with and without subsumption (represented as simplicial complexes and hypergraphs, respectively). In this model, at each iteration, a constant number …