Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Artificial Intelligence and Robotics

From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao Apr 2023

From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric …


An Approach To Developing Benchmark Datasets For Protein Secondary Structure Segmentation From Cryo-Em Density Maps, Thu Nguyen, Yongcheng Mu, Jiangwen Sun, Jing He Jan 2023

An Approach To Developing Benchmark Datasets For Protein Secondary Structure Segmentation From Cryo-Em Density Maps, Thu Nguyen, Yongcheng Mu, Jiangwen Sun, Jing He

Computer Science Faculty Publications

More and more deep learning approaches have been proposed to segment secondary structures from cryo-electron density maps at medium resolution range (5--10Å). Although the deep learning approaches show great potential, only a few small experimental data sets have been used to test the approaches. There is limited understanding about potential factors, in data, that affect the performance of segmentation. We propose an approach to generate data sets with desired specifications in three potential factors - the protein sequence identity, structural contents, and data quality. The approach was implemented and has generated a test set and various training sets to study …


Protein-Protein Interaction Prediction From Language Of Biological Coding, Nayan Howladar Aug 2022

Protein-Protein Interaction Prediction From Language Of Biological Coding, Nayan Howladar

University of New Orleans Theses and Dissertations

Protein-protein interactions in a cell are essential to the characterization and performance of various fundamental biological processes. Due to the tedious, resource-expensive, and time-consuming experimental processes, computational techniques to solve protein pair interaction difficulties have emerged as an active research area in bioinformatics. This research seeks to develop an innovative machine learning-based technique that predicts the interaction of a protein pair based on carefully selected input features and exploits information-rich evolutionary information. We developed a protein-protein interaction predictor, PPILS, that leverages the evolutionary knowledge from the protein language model. We examined several distinct neural network architectures: CNN+LSTM, Transformer, Encoder-Decoder, and …


A Tool For Segmentation Of Secondary Structures In 3d Cryo-Em Density Map Components Using Deep Convolutional Neural Networks, Yongcheng Mu, Salim Sazzed, Maytha Alshammari, Jiangwen Sun, Jing He Jan 2021

A Tool For Segmentation Of Secondary Structures In 3d Cryo-Em Density Map Components Using Deep Convolutional Neural Networks, Yongcheng Mu, Salim Sazzed, Maytha Alshammari, Jiangwen Sun, Jing He

Computer Science Faculty Publications

Although cryo-electron microscopy (cryo-EM) has been successfully used to derive atomic structures for many proteins, it is still challenging to derive atomic structures when the resolution of cryo-EM density maps is in the medium resolution range, such as 5–10 Å. Detection of protein secondary structures, such as helices and β-sheets, from cryo-EM density maps provides constraints for deriving atomic structures from such maps. As more deep learning methodologies are being developed for solving various molecular problems, effective tools are needed for users to access them. We have developed an effective software bundle, DeepSSETracer, for the detection of protein secondary structure …


Predicting Flavonoid Ugt Regioselectivity With Graphical Residue Models And Machine Learning., Arthur Rhydon Jackson Dec 2009

Predicting Flavonoid Ugt Regioselectivity With Graphical Residue Models And Machine Learning., Arthur Rhydon Jackson

Electronic Theses and Dissertations

Machine learning is applied to a challenging and biologically significant protein classification problem: the prediction of flavonoid UGT acceptor regioselectivity from primary protein sequence. Novel indices characterizing graphical models of protein residues are introduced. The indices are compared with existing amino acid indices and found to cluster residues appropriately. A variety of models employing the indices are then investigated by examining their performance when analyzed using nearest neighbor, support vector machine, and Bayesian neural network classifiers. Improvements over nearest neighbor classifications relying on standard alignment similarity scores are reported.