Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Chemistry

Theoretical Spectroscopic Predictions Of Electronically Excited States, Noah R. Garrett May 2024

Theoretical Spectroscopic Predictions Of Electronically Excited States, Noah R. Garrett

Honors Theses

The quest for faster computation of anharmonic vibrational frequencies of both ground and excited electronic states has led to combining coupled cluster theory harmonic force constants with density functional theory (DFT) cubic and quartic force constants for defining a quartic force field (QFF) utilized in conjunction with vibrational perturbation theory at second order (VPT2). This work shows that explicitly correlated coupled cluster theory at the singles, doubles, and perturbative triples level [CCSD(T)-F12] provides accurate anharmonic vibrational frequencies and rotational constants when conjoined with any of B3LYP, CAM-B3LYP, BHandHLYP, PBE0, and ωB97XD for roughly one-quarter of the computational time of the …


Energy Requirements For Abiotic Production Of Phosphorous Compounds At The Ice-Schreibersite Interface, Lindsay M. Hicks May 2021

Energy Requirements For Abiotic Production Of Phosphorous Compounds At The Ice-Schreibersite Interface, Lindsay M. Hicks

Symposium of Student Scholars

Energy Requirements for Abiotic Production of Phosphorous Compounds at the

Ice-Schreibersite Interface

The Abbott-Lyon Lab is investigating the chemistry at the interface of simple ices and a meteoritic mineral analogue. Phosphorous is a key component of numerous biomolecules necessary for life. Lack of an abundance of biologically accessible mineral sources of phosphates on Earth, termed “The Phosphorous Problem,” has led some origin-of-life scientists to look to extraterrestrial sources like meteoritic metal phosphides as possible sources of available phosphates. Schreibersite (Fe2NiP) is a common mineral in iron meteorites and a plausible source of biologically accessible phosphorous. This study will …


Spectroscopic Analysis Of Potential Astromolecules Via Quantum Chemical Quartic Force Fields, Mason Gardner May 2021

Spectroscopic Analysis Of Potential Astromolecules Via Quantum Chemical Quartic Force Fields, Mason Gardner

Honors Theses

Astrochemistry has been substantially aided by computational techniques, particularly through the use of Quartic Force Field (QFF) analysis. Several methods have proven useful at correlating computed spectroscopic data with experimental observations. The F12-TZ QFF correlated well with experimental data for silicon oxide compounds, particularly those potentially involved in development from rocky bodies to planetary masses [27]. Compared to argon matrix experimental data, the vibrational frequencies for the molecules SiO2, SiO3, Si2O3, and Si2O4 become less accurate as the complexity of the molecules increases but should still be predictive of infrared characteristics of silicon oxides as they form clusters in space …


Electron Model Based On Helmholtz’S Electron Vortex Theory & Kolmogorov’S Theory Of Turbulence, Florentin Smarandache, Victor Christianto, Robert Neil Boyd Jan 2019

Electron Model Based On Helmholtz’S Electron Vortex Theory & Kolmogorov’S Theory Of Turbulence, Florentin Smarandache, Victor Christianto, Robert Neil Boyd

Branch Mathematics and Statistics Faculty and Staff Publications

In this paper, we explore a new electron model based on Helmholtz’s electron vortex and Kolmogorov theory of turbulence. We also discuss a new model of origination of charge and matter.


Dipole Bound Excited States Of Polycyclic Aromatic Hydrocarbons Containing Nitrogen And Their Relation To The Interstellar Medium, Mallory L. Theis Apr 2014

Dipole Bound Excited States Of Polycyclic Aromatic Hydrocarbons Containing Nitrogen And Their Relation To The Interstellar Medium, Mallory L. Theis

Honors College Theses

Polycyclic aromatic hydrocarbons (PAHs) are the most abundant type of molecule present in the interstellar medium (ISM). It has been hypothesized that nitrogen replacement within a ring is likely for PAHs present in the ISM. Additionally, electrons, protons, and hydrogen atoms are readily added to or removed from PAHs creating a truly diverse set of chemistries in various interstellar regions. The presence of a nitrogen within a PAH (called a PANH herein) that is additionally dehydrogenated leads to a neutral radical with a large dipole moment. It has recently been shown through the use of high-level quantum chemical computations for …