Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 74

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Design And Synthesis Of Peripherally Selective Endocannabinoid Enzyme Inhibitors For Ocular Indications, Kezia Reji Thomas May 2023

Design And Synthesis Of Peripherally Selective Endocannabinoid Enzyme Inhibitors For Ocular Indications, Kezia Reji Thomas

Senior Honors Theses

Peripherally selective compounds have been found to stimulate endocannabinoid receptor activity, which has been observed to have positive physiological effects such as ocular wound healing and inflammation control. The activation of the cannabinoid 1 receptor via binding of the endogenous ligands, anandamide and 2-arachidonoylglycerol, has been indicated to elicit these effects. Both ligands are controlled by two hydrolase enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which can be targeted for therapeutic inhibition. Sulfonamide derivatives of JZL195 containing carbamate functionalities in the southern region of the inhibitor compounds were produced using novel carbamate exchange reactions. Polar functionalities were …


Computational Design And Molecular Modeling Of Morphine Derivatives For Preferential Binding In Inflamed Tissue, Makena Augenstein, Nayiri Alexander, Matthew Gartner Apr 2023

Computational Design And Molecular Modeling Of Morphine Derivatives For Preferential Binding In Inflamed Tissue, Makena Augenstein, Nayiri Alexander, Matthew Gartner

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The opioid epidemic has impacted over 10 million Americans in 2019. Opioids, like morphine, bind non-selectively in both peripheral tissue, leading to effective pain relief, and central tissue, resulting in dangerous side effects and addiction. The inflamed conditions of injured tissues have a lower pH (pH = 6–6.5) environment than healthy tissue (pH = 7.4). We aim to design a morphine derivative that binds selectively within inflamed tissue using molecular extension and dissection techniques. Morphine binds to the μ-opioid receptor (MOR) when the biochemically active amine group is protonated. Fluorination of a β-carbon from the tertiary amine group led to …


Effects Of Cannabinoids On Ligand-Gated Ion Channels, Murat Oz, Keun-Hang Susan Yang, Mohamed Omer Mahgoub Oct 2022

Effects Of Cannabinoids On Ligand-Gated Ion Channels, Murat Oz, Keun-Hang Susan Yang, Mohamed Omer Mahgoub

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Phytocannabinoids such as Δ9-tetrahydrocannabinol and cannabidiol, endocannabinoids such as N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, and synthetic cannabinoids such as CP47,497 and JWH-018 constitute major groups of structurally diverse cannabinoids. Along with these cannabinoids, CB1 and CB2 cannabinoid receptors and enzymes involved in synthesis and degradation of endocannabinoids comprise the major components of the cannabinoid system. Although, cannabinoid receptors are known to be involved in anti-convulsant, anti-nociceptive, anti-psychotic, anti-emetic, and anti-oxidant effects of cannabinoids, in recent years, an increasing number of studies suggest that, at pharmacologically relevant concentrations, these compounds interact with several molecular targets including G-protein coupled receptors, ion …


Subtype-Selective Positive Modulation Of KCa2.3 Channels Increases Cilia Length, Young-Woo Nam, Rajasekharreddy Pala, Naglaa Salem El-Sayed, Denisse Laren-Henriquez, Farideh Amirrad, Grace Yang, Mohammad Asikur Rahman, Razan Orfali, Myles Downey, Keykavous Parang, Surya M. Nauli, Miao Zhang Aug 2022

Subtype-Selective Positive Modulation Of KCa2.3 Channels Increases Cilia Length, Young-Woo Nam, Rajasekharreddy Pala, Naglaa Salem El-Sayed, Denisse Laren-Henriquez, Farideh Amirrad, Grace Yang, Mohammad Asikur Rahman, Razan Orfali, Myles Downey, Keykavous Parang, Surya M. Nauli, Miao Zhang

Pharmacy Faculty Articles and Research

Small-conductance Ca2+-activated potassium (KCa2.x) channels are gated exclusively by intracellular Ca2+. The activation of KCa2.3 channels induces hyperpolarization, which augments Ca2+ signaling in endothelial cells. Cilia are specialized Ca2+ signaling compartments. Here, we identified compound 4 that potentiates human KCa2.3 channels selectively. The subtype selectivity of compound 4 for human KCa2.3 over rat KCa2.2a channels relies on an isoleucine residue in the HA/HB helices. Positive modulation of KCa2.3 channels by compound 4 increased flow-induced Ca2+ signaling and cilia length, while negative …


Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Jul 2022

Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

n this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the …


Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani May 2022

Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani

Mathematics, Physics, and Computer Science Faculty Articles and Research

At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection …


Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Apr 2022

Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and …


Development Of An Hipsc-Cortical Neuron Long-Term Potentiation Model And Its Application To Alzheimer's Disease Modeling And Drug Evaluation, Kaveena Autar Jan 2022

Development Of An Hipsc-Cortical Neuron Long-Term Potentiation Model And Its Application To Alzheimer's Disease Modeling And Drug Evaluation, Kaveena Autar

Electronic Theses and Dissertations, 2020-

Alzheimer's disease (AD) is commonly characterized by a loss of cognitive function due to the deterioration of neuronal synapses from the presence of senile amyloid beta-42 (Aß42) plaques. Evaluating cognitive deficits caused by Aß42 using human cortical neurons poses a challenge due to sourcing difficulties, and the use of animal models to assess drug efficacy creates biological hurdles from lack of species translatability. Recent advances in induced-pluripotent stem cell technology have enabled the development of mature, human-based cortical neuron models. The development of an hiPSC-cortical neuron differentiation protocol facilitates the exploration of disease onset and functional analysis from a patient-derived …


Atomistic Simulations And In Silico Mutational Profiling Of Protein Stability And Binding In The Sars-Cov-2 Spike Protein Complexes With Nanobodies: Molecular Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta Sep 2021

Atomistic Simulations And In Silico Mutational Profiling Of Protein Stability And Binding In The Sars-Cov-2 Spike Protein Complexes With Nanobodies: Molecular Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structure-functional studies have recently revealed a spectrum of diverse high-affinity nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this study, we combine atomistic simulations with the ensemble-based mutational profiling of binding for the SARS-CoV-2 S-RBD complexes with a wide range of nanobodies to identify dynamic and binding affinity fingerprints and characterize the energetic determinants of nanobody-escaping mutations. Using an in silico mutational profiling approach for probing the protein stability and binding, we examine dynamics and energetics of the SARS-CoV-2 complexes with single nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E + …


Thermal Properties Of 18f-Fdg Uptake And Imaging In Positron Emission Tomography Scans Of Cancerous Cells, Carleigh R. Eagle Aug 2021

Thermal Properties Of 18f-Fdg Uptake And Imaging In Positron Emission Tomography Scans Of Cancerous Cells, Carleigh R. Eagle

PANDION: The Osprey Journal of Research and Ideas

Positron Emission Tomography (PET) scans can utilize a radioactive tracer, in this case 2-deoxy2-[fluorine-18] fluoro-D-glucose (18F-FDG), to visualize malignant tumors in cancer patients. The uptake was compared to glucose to understand the difference in thermal properties, which contribute to the ability to image the cancerous cells. The uptake of 18F-FDG by cancer cells and the imaging process of positron emission tomography were reviewed from a thermodynamic perspective. Gastrointestinal and neurological imaging techniques were reviewed to understand the role of PET imaging in different areas of the human body.


Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza May 2021

Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza

Graduate Theses and Dissertations

The Ras superfamily of GTPases has 167 proteins that are involved in various cellular processes such as proliferation, transformation, migration, and inhibition of cell death. Mutations, abnormal expression, and function of these proteins are observed in many diseases, including several forms of cancer. Even though these GTPases were among the first discovered oncogenes, no successful Ras drug candidate has successfully passed clinical trials. Drugs targeting these proteins have failed mainly because of the complexity of their regulation, their high affinity to GTP, and their structure’s dynamic nature. Recently, novel promising targeting approaches have renewed interest in the Ras drug discovery …


Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli Feb 2021

Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli

Pharmacy Faculty Articles and Research

During drug development, evaluation of drug and its metabolite is an essential process to understand drug activity, stability, toxicity and distribution. Liquid chromatography (LC) coupled with mass spectrometry (MS) has become the standard analytical tool for screening and identifying drug metabolites. Unlike LC/MS approach requiring liquifying the biological samples, we showed that spectral imaging (or spectral microscopy) could provide high-resolution images of doxorubicin (dox) and its metabolite doxorubicinol (dox’ol) in single living cells. Using this new method, we performed measurements without destroying the biological samples. We calculated the rate constant of dox translocating from extracellular moiety into the cell and …


Design And Synthesis Of Core–Shell Microgels With One‐Step Clickable Crosslinked Cores And Ultralow Crosslinked Shells, Molla R. Islam, Chelsea Nguy, Sanika Pandit, L. Andrew Lyon Sep 2020

Design And Synthesis Of Core–Shell Microgels With One‐Step Clickable Crosslinked Cores And Ultralow Crosslinked Shells, Molla R. Islam, Chelsea Nguy, Sanika Pandit, L. Andrew Lyon

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The present study is conducted to explore the engineering of core–shell microgels such that the core can be rapidly labeled with a variety of fluorophores, while the shell retains the softness needed in specific biomedical applications. Azide containing crosslinked core particles based on a crosslinked poly(N‐isopropylacrylamide) particle, using a one‐pot, multistep polymerization is synthesized. A core–shell microgel is then synthesized by growing a crosslinker‐free poly(N‐isopropylacrylamide)‐co‐acrylic acid (ULC10AAc) shell through a two‐step seed and feed polymerization. A simple “click” reaction between the azide present on the core and dibenzocyclooctyne containing fluorophores to make dyed core–shell …


Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker Jun 2019

Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approaches, including tree based methods, random forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide sequences for classification of cancer driver mutations was initially explored by employing label encoding, one hot encoding, and embedding to …


Purification And Characterization Of A Nonspecific Lipid Transfer Protein 1 (Nsltp1) From Ajwain (Trachyspermum Ammi) Seeds, Meshal Nazeer, Humera Waheed, Maria Saeed, Saman Yousuf Ali, M. Iqbal Choudhary, Zaheer Ul-Haq, Aftab Ahmed Mar 2019

Purification And Characterization Of A Nonspecific Lipid Transfer Protein 1 (Nsltp1) From Ajwain (Trachyspermum Ammi) Seeds, Meshal Nazeer, Humera Waheed, Maria Saeed, Saman Yousuf Ali, M. Iqbal Choudhary, Zaheer Ul-Haq, Aftab Ahmed

Pharmacy Faculty Articles and Research

Ajwain (Trachyspermum ammi) belongs to the family Umbelliferae, is commonly used in traditional, and folk medicine due to its carminative, stimulant, antiseptic, diuretic, antihypertensive, and hepatoprotective activities. Non-specific lipid transfer proteins (nsLTPs) reported from various plants are known to be involved in transferring lipids between membranes and in plants defense response. Here, we describe the complete primary structure of a monomeric non-specific lipid transfer protein 1 (nsLTP1), with molecular weight of 9.66 kDa, from ajwain seeds. The nsLTP1 has been purified by combination of chromatographic techniques, and further characterized by mass spectrometry, and Edman degradation. The ajwain nsLTP1 …


Synthesis, Biological Evaluation And Molecular Modeling Studies Of Novel Chromone/Aza-Chromone Fused Α-Aminophosphonates As Src Kinase Inhibitors, S. Bapat, N. Viswanadh, M. Mujahid, Amir Nasrolahi Shirazi, Rakesh Tiwari, Keykavous Parang, M. Karthikeyan, M. Muthukrishnan, Renu Vyas Feb 2019

Synthesis, Biological Evaluation And Molecular Modeling Studies Of Novel Chromone/Aza-Chromone Fused Α-Aminophosphonates As Src Kinase Inhibitors, S. Bapat, N. Viswanadh, M. Mujahid, Amir Nasrolahi Shirazi, Rakesh Tiwari, Keykavous Parang, M. Karthikeyan, M. Muthukrishnan, Renu Vyas

Pharmacy Faculty Articles and Research

A series of novel chromone/aza-chromone fused α-aminophosphonate derivatives were synthesized in good yields using silica chloride as the catalyst. All the synthesized compounds were tested for their c-Src kinase inhibitory activity. Aza-chromone compound showed Src kinase inhibition with an IC50 value of 15.8 µM. The compounds were subjected to molecular docking and dynamics simulations to study the atomic level interactions with an unphosphorylated proto-oncogenic tyrosine protein kinase Src (PDB code 1Y57) as well as phosphorylated tyrosine protein kinase Src (PDB code 2H8H). Docking and molecular dynamic results revealed phosphorylated Src tyrosine kinase protein better results than unphosphorylated tyrosine Src kinase …


Ferrocenylchalcone-Uracil Conjugates: Synthesis And Cytotoxic Evaluation, Amandeep Singh, Vishu Mehra, Neda Sadeghiani, Saghar Mozaffari, Keykavous Parang, Vipan Kumar Feb 2018

Ferrocenylchalcone-Uracil Conjugates: Synthesis And Cytotoxic Evaluation, Amandeep Singh, Vishu Mehra, Neda Sadeghiani, Saghar Mozaffari, Keykavous Parang, Vipan Kumar

Pharmacy Faculty Articles and Research

Huisgen’s azide-alkyne cycloaddition reaction was employed to synthesize a series of 1H-1,2,3-triazole-tethered uracil-ferrocenyl chalcone conjugates with the aim of evaluating their in vitro anti-proliferative efficacy on human leukemia (CCRF-CEM) and human breast adenocarcinoma (MDA-MB-468) cell lines. Cytotoxic evaluation studies identified a number of synthesized conjugates that inhibited the proliferation of leukemia cancer cells by ~70% after 72 h. The selected synthesized conjugates were found to be significantly less cytotoxic against normal kidney cell line (LLC-PK1) when compared with CCRF-CEM cancer cells.


Traceable Peo-Poly(Ester) Micelles For Breast Cancer Targeting: The Effect Of Core Structure And Targeting Peptide On Micellar Tumor Accumulation, Shyam M. Garg, Igor M. Paiva, Mohammad R. Vakili, Rania Soudy, Kate Agopsowicz, Amir H. Soleimani, Mary Hitt, Kamaljit Kaur, Afsaneh Lavasanifar Aug 2017

Traceable Peo-Poly(Ester) Micelles For Breast Cancer Targeting: The Effect Of Core Structure And Targeting Peptide On Micellar Tumor Accumulation, Shyam M. Garg, Igor M. Paiva, Mohammad R. Vakili, Rania Soudy, Kate Agopsowicz, Amir H. Soleimani, Mary Hitt, Kamaljit Kaur, Afsaneh Lavasanifar

Pharmacy Faculty Articles and Research

Traceable poly(ethylene oxide)-poly(ester) micelles were developed through chemical conjugation of a near-infrared (NIR) dye to the poly(ester) end by click chemistry. This strategy was tried for micelles with poly(ε-caprolactone) (PCL) or poly(α-benzyl carboxylate-ε-caprolactone) (PBCL) cores. The surface of both micelles was also modified with the breast cancer targeting peptide, P18-4. The results showed the positive contribution of PBCL over PCL core on micellar thermodynamic and kinetic stability as well as accumulation in primary orthotopic MDA-MB-231 tumors within 4–96 h following intravenous administration in mice. This was in contrast to in vitro studies where better uptake of PEO-PCL versus PEO-PBCL micelles …


Peroxiredoxin Catalysis At Atomic Resolution, Arden Perkins, Derek Parsonage, Kimberly J. Nelson, O. Maduka Ogba, Paul Ha-Yeon Cheong, Leslie B. Poole, P. Andrew Karplus Sep 2016

Peroxiredoxin Catalysis At Atomic Resolution, Arden Perkins, Derek Parsonage, Kimberly J. Nelson, O. Maduka Ogba, Paul Ha-Yeon Cheong, Leslie B. Poole, P. Andrew Karplus

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidases that guard cells against oxidative damage, are virulence factors for pathogens, and are involved in eukaryotic redox regulatory pathways. We have analyzed catalytically active crystals to capture atomic resolution snapshots of a PrxQ-subfamily enzyme (from Xanthomonas campestris) proceeding through thiolate, sulfenate, and sulfinate species. These analyses provide structures of unprecedented accuracy for seeding theoretical studies, and show novel conformational intermediates giving insight into the reaction pathway. Based on a highly non-standard geometry seen for the sulfenate intermediate, we infer that the sulfenate formation itself can strongly promote local unfolding of the active site to …


Analysis Of New Hiv-1 Inhibitors As Potential Antiviral Agents For Hiv-2, Rowan Brothers Apr 2016

Analysis Of New Hiv-1 Inhibitors As Potential Antiviral Agents For Hiv-2, Rowan Brothers

Georgia State Undergraduate Research Conference

No abstract provided.


A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin Mar 2016

A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin

Albert Fratini

The title compound, sodium bis­(6-carb­oxy-1-hy­droxy-3-oxo-1,3-dihydro-2,1-benzoxaborol-1-yl)oxidanium, Na+·C16H15B2O13-, was prepared in two steps from 2-bromo-p-xylene. Its crystal structure was determined at 140 K and has triclinic (P) symmetry. The compound presents a unique structural motif, including two units of the cyclic anhydride of boronoterephthalic acid, joined by a protonated, and thereby trivalent, oxonium center. Association in the crystal is realized by complementary hydrogen bonding of the carboxyl groups, as well as by coordination of the sodium cations to the oxygen centers on the five-membered rings.


C–N Bond Rotation And E–Z Isomerism In Some N-Benzyl-N-Methylcarbamoyl Chlorides: A Dft Study, Michael Horwath, Vladimir Benin Nov 2015

C–N Bond Rotation And E–Z Isomerism In Some N-Benzyl-N-Methylcarbamoyl Chlorides: A Dft Study, Michael Horwath, Vladimir Benin

Vladimir Benin

The current report presents the first theoretical study of the restricted CN bond rotation in carbamoyl chlorides. Several N-benzyl-N-methylcarbamoyl chlorides were investigated, with varying pattern of substitution in the aromatic ring. Optimizations and frequency calculations were conducted employing DFT at the B3LYP/6-31+G(d) level of theory. Each of the studied structures exhibits a pair of rotamers (s-Z and s-E), generated upon rotation around the C(O)N bond. The s-E isomer is the global minimum in every case, but the preference for it is usually less than 1 kcal/mol. Two possible transition state structures were identified for the rotamer interconversion: TSsyn and TSanti, …


Preparation And Characterization Of Some Substituted Benzyl N-Nitrosocarbamates Containing An N-2-(Methylthio)Ethyl Or A Bis(2-Aminoethyl)Sulfide Functionality, Satya Venkata, Eric Shamo, Vladimir Benin Nov 2015

Preparation And Characterization Of Some Substituted Benzyl N-Nitrosocarbamates Containing An N-2-(Methylthio)Ethyl Or A Bis(2-Aminoethyl)Sulfide Functionality, Satya Venkata, Eric Shamo, Vladimir Benin

Vladimir Benin

The synthesis and characterization of some substituted benzyl N-nitrosocarbamates with an N-2-(methylthio)ethyl or a bis(2-aminoethyl)sulfide functionality is reported, as a part of a long-term goal to design and prepare novel photolabile structures that could be used as substances for controlled release of alkylating and/or crosslinking agents. The synthesis was accomplished by reaction of benzyl chloroformates with the corresponding amines, resulting in the preparation of carbamates. The latter were subsequently nitrosated, utilizing two different N-nitrosation methods, to yield the target structures.


The Tetrafluoroborate Salt Of 4-Methoxybenzyl N-2-(Dimethylamino)Ethyl-N-Nitrosocarbamate: Synthesis, Crystal Structure And Dft Calculations, Helene Hedian, Vladimir Benin Nov 2015

The Tetrafluoroborate Salt Of 4-Methoxybenzyl N-2-(Dimethylamino)Ethyl-N-Nitrosocarbamate: Synthesis, Crystal Structure And Dft Calculations, Helene Hedian, Vladimir Benin

Vladimir Benin

The tetrafluoroborate salt of 4-methoxybenzyl N-2-(dimethylamino)ethyl-N-nitrosocarbamate was prepared in two steps, via the corresponding carbamate. Its crystal structure is monoclinic, space group P21/c. The unit cell dimensions are: a = 19.499(8) Å, b = 5.877(3) Å, c = 15.757(7) Å, α = 90°, β = 110.019(7)°, γ = 90°, V = 1696.5(12) Å3, Z = 4. The structure exhibits an unexpected, pseudo-gauche conformation with respect to the C2–C3 bond, due to a stabilizing hydrogen bond between the carbonyl oxygen (O1) and the hydrogen atom at the trialkylammonium center (H3n), with a distance between them of 2.37 Å. DFT calculations on …


A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin Nov 2015

A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin

Vladimir Benin

The title compound, sodium bis­(6-carb­oxy-1-hy­droxy-3-oxo-1,3-dihydro-2,1-benzoxaborol-1-yl)oxidanium, Na+·C16H15B2O13-, was prepared in two steps from 2-bromo-p-xylene. Its crystal structure was determined at 140 K and has triclinic (P) symmetry. The compound presents a unique structural motif, including two units of the cyclic anhydride of boronoterephthalic acid, joined by a protonated, and thereby trivalent, oxonium center. Association in the crystal is realized by complementary hydrogen bonding of the carboxyl groups, as well as by coordination of the sodium cations to the oxygen centers on the five-membered rings.


Secondary N-Nitrosocarbamate Anions: Structure And Alkylation Reactions. A Dft Study, Vladimir Benin Nov 2015

Secondary N-Nitrosocarbamate Anions: Structure And Alkylation Reactions. A Dft Study, Vladimir Benin

Vladimir Benin

The current article reports theoretical studies (DFT: B3LYP/6-31+G(d)) on the structure and alkylation reactions of the anions of some secondary N-nitrosocarbamates, a class of ambident nucleophiles whose chemistry has been little explored. Several anions (1–4), with an increasing size of the carbamate alkyl (aryl) group were investigated, in an attempt to establish the influence of the size of that group on the thermal stability and regioselectivity of alkylation of the title anions. The conclusion is that thermal stability and the mode of reaction are affected significantly only in the presence of very large and branched carbamate groups. The thermal decomposition …


Preparation Of Phosphonoterephthalic Acids Via Palladium-Catalyzed Coupling Of Aromatic Iodoesters, Nathaniel Ivan, Vladimir Benin, Alexander Morgan Nov 2015

Preparation Of Phosphonoterephthalic Acids Via Palladium-Catalyzed Coupling Of Aromatic Iodoesters, Nathaniel Ivan, Vladimir Benin, Alexander Morgan

Vladimir Benin

The current article reports in detail the preparation of two phosphonoterephthalic acids: 2-phosphonoterephthalic acid (1) and 2,5-diphosphonoterephthalic acid (2). Efficient, scalable syntheses have been developed for both compounds based on Pd-catalyzed coupling reactions of iodinated terephthalate esters. Phosphonoterephthalic acids are potentially useful as flame-retardant additives or as monomers for the construction of acid-pendant polymer chains.


Preparation Of Some Substituted Terephthalic Acids, Susanna Branion, Vladimir Benin Nov 2015

Preparation Of Some Substituted Terephthalic Acids, Susanna Branion, Vladimir Benin

Vladimir Benin

We report in detail the preparation of two substituted terephthalic acids: 2‐sulfomethylterephthalic acid (1) and 2‐phosphonoterephthalic acid (2). Efficient, short syntheses have been developed for both compounds. They are potentially useful monomers for construction of acid‐pendant polymer chains.


Theoretical Investigation Of A Reported Antibiotic From The 'Miracle Tree' Moringa Oleifera, Michael Horwath, Vladimir Benin Nov 2015

Theoretical Investigation Of A Reported Antibiotic From The 'Miracle Tree' Moringa Oleifera, Michael Horwath, Vladimir Benin

Vladimir Benin

Moringa oleifera, sometimes called the “Miracle Tree,” has received international attention for its potential to improve health in impoverished tropical areas. In addition to high vitamin content in the leaves and pods, the tree contains compounds with antioxidant and antibacterial properties. This study focused on the theoretical investigation of the suggested structure of one antibacterial compound, “pterygospermin,” whose existence was proposed after some studies of the roots of M. oleifera. The structure of pterygospermin was first proposed by a research group working in the 1950s, but later studies have not found evidence of this compound and have instead attributed the …


Synthesis And Flammability Testing Of Epoxy Functionalized Phosphorous-Based Flame Retardants, Vladimir Benin, Xuemei Cui, Alexander Morgan, Karl Seiwert Nov 2015

Synthesis And Flammability Testing Of Epoxy Functionalized Phosphorous-Based Flame Retardants, Vladimir Benin, Xuemei Cui, Alexander Morgan, Karl Seiwert

Vladimir Benin

Several potential new phosphorus-containing flame retardant molecules were evaluated for heat release reduction potential by incorporation of the molecules into a polyurethane, generated from methylene diphenyl diisocyanate and 1,3-propane diol. The heat release reduction potential of these substances was evaluated using the pyrolysis combustion flow calorimeter (PCFC). The polyurethanes were prepared in the presence of the potential flame retardants via solvent mixing and copolymerization methods to qualitatively evaluate their potential reactivity into the polyurethane prior to heat release testing. The functionality of the flame retardants was epoxide based that would potentially react with the diol during polyurethane synthesis. Flammability testing …