Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Materials Chemistry

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead Jan 2021

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead

Theses and Dissertations

Metal-silicon nanostructures are a growing area of research due to their applications in multiple fields such as biosensing and catalysis. In addition, silicon can provide strong support effects to metal nanoparticles while being more cost effective than traditionally used supports, like titania. Traditional wet-chemical methods are capable of synthesizing metal-silicon nanostructures with a variety of composition and nanoparticle shapes, but they often require high temperatures, toxic solvents, strong reducing agents, or need capping agents added to stabilize the nanoparticles. Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces that offers a faster, simpler, and greener synthesis route …


The Quantum Efficiency Of Cdse Semiconducting Nanocrystals, Charles Bledsoe Jul 2015

The Quantum Efficiency Of Cdse Semiconducting Nanocrystals, Charles Bledsoe

Undergraduate Theses

CdSe molecules are semiconducting nanocrystals that absorb visible light and emit broad wavelengths of light in response. They utilize electromagnetic radiation not only for emitting broad wavelengths of visible light, but for fluorescence, conducting electricity, and vibrational relaxation. The Thermal Lensing technique (TL) can be used to study the lifetimes of the excited state transitions and the various nonradiative processes molecules can undergo in order to better understand the excited state dynamics of semiconducting nanocrystals, and in turn, better understand how these molecules may be applied in solar cells, lasers, and fluorescence labeling. Using known methods, four samples of CdSe …


Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan Jan 2015

Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan

Faculty Publications

This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G) and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse …


Picosecond Laser Pulse Irradiation Of Crystalline Silicon, K. L. Merkle, H. Baumgart, R.H. Uebbing, F. Phillipp Jan 1982

Picosecond Laser Pulse Irradiation Of Crystalline Silicon, K. L. Merkle, H. Baumgart, R.H. Uebbing, F. Phillipp

Electrical & Computer Engineering Faculty Publications

Morphology changes introduced by picosecond laser pulses at λ = 532 nm and 355 nm in (111) and (100) silicon samples are studied by means of optical and high-voltage electron microscopy. Depending on energy fluence, orientation and wavelength, amorphous or highly defective regions may be created. From an analysis of damage thresholds and damage depth distributions it is concluded that melting and energy confinement precedes the formation of the structural changes.