Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 37 of 37

Full-Text Articles in Materials Chemistry

Fabrication Of Multifunctional Nanostructured Porous Materials, Ahmed A. Farghaly Jan 2016

Fabrication Of Multifunctional Nanostructured Porous Materials, Ahmed A. Farghaly

Theses and Dissertations

Nanostructured porous materials generally, and nanoporous noble metals specifically, have received considerable attention due to their superior chemical and physical properties over nanoparticles and bulk counterparts. This dissertation work aims to develop well-established strategies for the preparation of multifunctional nanostructured porous materials based on the combination of inorganic-chemistry, organic-chemistry and electrochemistry. The preparation strategies involved one or more of the following processes: sol-gel synthesis, co-electrodeposition, metal ions reduction, electropolymerization and dealloying or chemical etching. The study did not stop at the preparation limits but extended to investigate the reaction mechanism behind the formation of these multifunctional nanoporous structures in order …


Diazaborole Linked Porous Polymers: Design, Synthesis, And Application To Gas Storage And Separation, Zafer Kahveci Jan 2015

Diazaborole Linked Porous Polymers: Design, Synthesis, And Application To Gas Storage And Separation, Zafer Kahveci

Theses and Dissertations

The synthesis of highly porous organic polymers with predefined porosity has attracted considerable attention due to their potential in a wide range of applications. Porous organic polymers (POPs) offer novel properties such as permanent porosity, adjustable chemical nature, and noteworthy thermal and chemical stability. These remarkable properties of the POPs make them promising candidates for use in gas separation and storage. The emission of carbon dioxide (CO2) from fossil fuel combustion is a major cause of global warming. Finding an efficient separation and/or storage material is essential for creating a cleaner environment. Therefore, the importance of the POPs …


Colloidal Synthesis And Optical Characterizations Of Semiconductor Nanocrystals From Nontoxic Elements, Minh Q. Ho Jan 2015

Colloidal Synthesis And Optical Characterizations Of Semiconductor Nanocrystals From Nontoxic Elements, Minh Q. Ho

Theses and Dissertations

To date, the search efforts have shifted from the toxic II-VI, III-V and IV-VI semiconductors to more environmentally friendly materials. Among Group II-V semiconductors, Zn3P2 has shown to be a more benign option, similar to Group IV (Ge, Si) materials, for future applications in photovoltaics and optoelectronics. This work is dedicated to the development of wet-chemical synthetic routes of (1) Zn3P2 and (2) Group IV (Ge, Si, Si1-xGex) nanocrystals with precise control over composition, crystal structure, size and dispersity by adjusting different reaction parameters such as temperature, time and solvent …


Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …


Heteroatom-Doped Nanoporous Carbons: Synthesis, Characterization And Application To Gas Storage And Separation, Babak Ashourirad Jan 2015

Heteroatom-Doped Nanoporous Carbons: Synthesis, Characterization And Application To Gas Storage And Separation, Babak Ashourirad

Theses and Dissertations

Activated carbons as emerging classes of porous materials have gained tremendous attention because of their versatile applications such as gas storage/separations sorbents, oxygen reduction reaction (ORR) catalysts and supercapacitor electrodes. This diversity originates from fascinating features such as low-cost, lightweight, thermal, chemical and physical stability as well as adjustable textural properties. More interestingly, sole heteroatom or combinations of various elements can be doped into their framework to modify the surface chemistry. Among all dopants, nitrogen as the most frequently used element, induces basicity and charge delocalization into the carbon network and enhances selective adsorption of CO2. Transformation of …


Modified Seed Growth Of Iron Oxide Nanoparticles In Benzyl Alcohol: Magnetic Nanoparticles For Radio Frequency Hyperthermia Treatment Of Cancer, Stanley E. Gilliland Iii Jan 2014

Modified Seed Growth Of Iron Oxide Nanoparticles In Benzyl Alcohol: Magnetic Nanoparticles For Radio Frequency Hyperthermia Treatment Of Cancer, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles have received sustained interest for biomedical applications as synthetic approaches are continually developed for precise control of nanoparticle properties. This thesis presents an investigation of parameters in the benzyl alcohol synthesis of iron oxide nanoparticles. A modified seed growth method was designed for obtaining optimal nanoparticle properties for magnetic fluid hyperthermia. With a one or two addition process, iron oxide nanoparticles were produced with crystallite sizes ranging from 5-20 nm using only benzyl alcohol and iron precursor. The effects of reaction environment, temperature, concentration, and modified seed growth parameters were investigated to obtain precise control over properties …


Fabrication And Characterization Of High Surface Area Gold Electrodes, Madhura S. Damle Jan 2014

Fabrication And Characterization Of High Surface Area Gold Electrodes, Madhura S. Damle

Theses and Dissertations

High surface area gold electrodes are very good substrates for biosensors, catalysis and drug delivery. Their performance is characterized by good sensitivity, low detection limit and high signal. As a result, extensive research is being carried out in this field using different approaches of fabrication to generate high surface area porous electrodes of different morphology, pore size and structure. The morphology of the electrodes can be changed based on whether the approach involves a template or not, types of metal deposition, method and time of dealloying etc. The deposition of metal can be carried out using various approaches such as …