Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 199

Full-Text Articles in Materials Chemistry

Gas Evolution Of A Nickel-Zinc Cell, Niklas Landgraf Jan 2024

Gas Evolution Of A Nickel-Zinc Cell, Niklas Landgraf

MSU Graduate Theses

Batteries are a foundational technology in some of the industries most essential to humanity. Often, their advancement to achieve better performance impacts human lives positively. There are a wide variety of battery chemistries that have been utilized, and the differences in their properties have caused them to be used in many distinct niche applications. Nickel-Zinc (NiZn) batteries are desirable because of their recyclable materials, high cell voltage, and high cycle-life. However, it experiences undesirable shape-change of its electrode materials and gas production due to the electrolysis of the aqueous electrolyte. These can lead to a decrease in capacity over many …


Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj Dec 2023

Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj

Journal of Materials Exploration and Findings

The production of metal and alloy products requires the use of heat treatment, when during the heat treatment process, quenching is a crucial step. The quenching medium can be anything from water, a salt bath, oil, air and gas. In a vacuum furnace, pressurized gas, most frequently nitrogen (N2) gas, serves as one of the quenching mediums. One of the drawbacks of the quenching process is the distortion and dimensional change of the parts. This paper aims to investigate the influence of nitrogen gas quenching pressure on the distortion and dimensional change of aerospace actuator gear planet parts …


Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara Dec 2023

Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara

Journal of Materials Exploration and Findings

Hydrocarbon releases might result in serious consequences in various aspects. In addition to the contribution to environmental pollution, repetitive leakages need high repair costs. This study aim is to minimize potential repetitive leakage for other typical 3-phase piping systems. We conducted the risk assessment by adopting Risk Based Inspection (RBI) API 581 to identify risk level, calculating piping lifetime, recommended inspection plan and mitigations. The most relevant root causes can be obtained through quantitative Fault Tree Analysis (FTA). Observation and investigation was taken from eight 3-phase piping systems that experienced repetitive leakages. It has been found that the risk level …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Hydroxyapatite-Based Coatings On Silicon Wafers And Printed Zirconia, Antoine Chauvin Nov 2023

Hydroxyapatite-Based Coatings On Silicon Wafers And Printed Zirconia, Antoine Chauvin

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Dental surgery needs a naturally attract implant design that can ensure both osseointegration and soft tissue integration. Hydroxyapatite (HAp), the main mineral constituent of dentine and tooth enamel, is commonly used as a coating component, notably for overlaying titanium– or ceramics–based implants. This thesis aims to investigate the behavior of a HAp-based coating, specifically designed to be compatible with a porous substrate. Coating layers are made by sol–gel dip coating by immersion of porous substrates made by additive manufacturing into solutions of HAp, having been mixed with polyethyleneimine (PEI), to improve the adhesion of HAp on the substrate. First, the …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park Aug 2023

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert May 2023

Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert

Honors Theses

The work covered in this thesis all falls under the theme of photophysical processes after light and matter interact. Those of primary interest are Raman scattering induced vibrations and excited state dynamics probed by transient absorption spectroscopy. Small molecules are studied with Raman spectroscopy and computational chemistry. These studies unearth the shifts in vibrational frequency as a function of charge transfer or receipt and how a quantitative assay of natural orbital populations and delocalization can offer both the nature and magnitude of this charge transfer. Further, a method is presented that builds upon previous work within the academic family tree; …


Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob May 2023

Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob

Electronic Theses and Dissertations

Yttria-stabilized zirconia (YSZ) is a widely used ceramic material in solid oxide fuel cells, oxygen sensors, and sensing applications due to its high ionic conductivity, chemical inertness, and thermal stability. YSZ is promising active coating for use in miniaturized harsh environment wireless surface acoustic sensors to monitor gases such as H2. Adding catalytic Pt nanoparticles can enhance gas reactivity and lead to associated film conductivity changes.

In this work, thin films with an (8% Y2O3 - 92% ZrO2) composition were deposited onto piezoelectric langasite substrates using RF magnetron sputtering in Ar:O2 - …


Carbon Dioxide-Induced Corrosion Of Aisi 4140 Steel In Acidified Artificial Geothermal Brine, Anawati Anawati, Rayhan Izzat, Riene Kaelamanda Pragitta, Rafli Ihsan Hernandi Mar 2023

Carbon Dioxide-Induced Corrosion Of Aisi 4140 Steel In Acidified Artificial Geothermal Brine, Anawati Anawati, Rayhan Izzat, Riene Kaelamanda Pragitta, Rafli Ihsan Hernandi

Makara Journal of Science

Carbon dioxide (CO2)-induced corrosion often occurs in the structural materials of geothermal industry. The presence of CO2 influences the formation of various corrosion products. This research investigates the effect of dissolved CO2 in acidic brines on the corrosion behavior of AISI 4140 steel at atmospheric pressure. The brines were the standard brine, Ca-free brine, and high-salinity brine. The corrosion behavior was studied using electrochemical and immersion tests. A cyclic polarization test showed that the corrosion rate was higher in dissolved CO2 brine than in non-CO2 brine, and an immersion test demonstrated a similar result. …


Pressure - Temperature Phase Diagram Of Crsite3, J L. Musfeldt, David Mandrus, Zhenxian Liu Jan 2023

Pressure - Temperature Phase Diagram Of Crsite3, J L. Musfeldt, David Mandrus, Zhenxian Liu

Chemistry Publications and Other Works

van der Waals solids are well known to host remarkable phase diagrams with competing phases, unusual energy transfer processes, and elusive states of matter. Among this class of materials, chalcogenides have emerged as the most flexible and relevant platforms for unraveling charge-structure-function relationships. In order to explore the properties of complex chalcogenides under external stimuli, we measured the far infrared spectroscopic response of CrSiTe3 under extreme pressure-temperature conditions. Analysis of the 368 cm−1 Si-Te stretching mode and the manner in which it is screened by the closure of the indirect gap reveals that the insulator-metal transition takes place immediately after …


Synthesis Of A Novel Terbium(Iii) Complex For Application In Metal Nanoparticle Surface Modification, Lauralee E. Hurst, Davon Ferrara, Justin Stace Jan 2023

Synthesis Of A Novel Terbium(Iii) Complex For Application In Metal Nanoparticle Surface Modification, Lauralee E. Hurst, Davon Ferrara, Justin Stace

Science University Research Symposium (SURS)

Lanthanide ions, such as terbium(III), exhibit bright luminescence when bound to organic ligands which strongly absorb light. This property has been used in creating chemical sensors or luminescent tags for microscopy. Complexes centered with terbium(III) exhibit a yellow-green luminescence upon excitation by shortwave ultraviolet light. In this work, a bifunctional ligand, 4-mercaptobenzoic acid (4mba), was chosen to selectively coordinate terbium(III) to the oxygens of the acid functional group, leaving the thiol group available for another compound. Thiol groups are effectively used in surface coordination to noble metal nanoparticles (NP). In efforts to create a novel 4mba-terbium(III)-NP system, a one pot …


Color-Changing Reflection Hologram For Quality Assurance Of Therapeutic Ultrasound Systems, Tatsiana Mikulchyk, John Walsh, Jacinta Browne, Izabela Naydenova, Dervil Cody Jan 2023

Color-Changing Reflection Hologram For Quality Assurance Of Therapeutic Ultrasound Systems, Tatsiana Mikulchyk, John Walsh, Jacinta Browne, Izabela Naydenova, Dervil Cody

Articles

The acoustic output of clinical therapeutic ultrasound equipment requires regular quality assurance (QA) testing to ensure the safety and efficacy of the treatment and that any potentially harmful deviations from the expected output power density are detected as soon as possible. A hologram, consisting of a reflection grating fabricated in an acrylate photopolymer film, has been developed to produce an immediate, visible, and permanent change in the color of the reconstructed hologram from red to green in response to incident ultrasound energy. The influence of the therapeutic ultrasound insonation parameters (exposure time, ultrasound power density, and proximity to the point …


Using Superatomic Clusters And Charge Transfer Ligands To Control Electronic Characteristics Of Phosphorene Nanoribbons And Phosphorene Monolayer, Ryan Lambert Jan 2023

Using Superatomic Clusters And Charge Transfer Ligands To Control Electronic Characteristics Of Phosphorene Nanoribbons And Phosphorene Monolayer, Ryan Lambert

Theses and Dissertations

Phosphorene is a two-dimensional electron poor p-type semiconductor with high carrier mobility and great promise for applications in electronics and optoelectronics. As the main theme in this dissertation, the following work represents different investigations of various electronic properties associated with phosphorene. Most notable are the findings on charge transfer doping with metal-chalcogenide superatoms which displays novel control of the two most important properties of a semiconductor – the band gap energy and the nature of carriers. By tuning the width of the gap and p-/n-type character of conduction, we gain control over a material’s capacity to play a certain role …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales Sep 2022

Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales

Dissertations, Theses, and Capstone Projects

For many years, atomic point-defects have been readily used to tune the bulk properties of solid-state crystalline materials, for instance, through the inclusion of elemental impurities (doping) during growth, or post-processing treatments such as ion bombardment or high-energy irradiation. Such atomic point-defects introduce local ‘incompatible’ chemical interactions with the periodic atomic arrangement that makes up the crystal, resulting for example in localized electronic states due to dangling bonds or excess of electrons. When present in sufficient concentrations, the defects interact collectively to alter the overall bulk properties of the host material. In the low concentration limit, however, point-defects can serve …


Transistion Metal Chalcogenides And Phosphides For Energy Storage And Conversion Through Water Splitting, Kelsey Thompson May 2022

Transistion Metal Chalcogenides And Phosphides For Energy Storage And Conversion Through Water Splitting, Kelsey Thompson

Electronic Theses & Dissertations

In contemporary society, there are many different ways that energy is used in daily life. From applications that require a high energy density to long-term storage in a stable manner, the requirements for energy usage are diverse. Therefore, the greater the number of uses a designed material exhibits, the more practical it may be for wide-scale manufacture. Two areas of particular interest for energy applications are fuel cells (to generate energy) and supercapacitors (to store energy). To provide cheaper and more durable alternatives for energy storage, electrodes containing CoMoO4, NiMoO4, CoMoS4, NiMoS4, …


Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian Apr 2022

Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian

Articles

Mycotoxins are secondary metabolic products of fungi. They are poisonous, carcinogenic, and mutagenic in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even death. Rapid, simple and low-cost methods of detection of mycotoxins are of immense importance and in great demand in the food and beverage industry, as well as in agriculture and environmental monitoring, and, for this purpose, lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety and environmental monitoring. The literature to date describing the development of ICSTs for the detection of different types of mycotoxins using …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad Feb 2022

Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad

Doctoral Dissertations

This thesis explores an experimental system probing the effect of energy input (in light-responsive bilayers) on membrane physicomechanical properties and dynamics of response to a trigger. We were inspired by the ability of cell membranes to alter their elastic and permeability properties and shape in response to energy input, change in lipid chemistry, or bilayer composition. Our work demonstrates and sheds new light on the roles of lipid chemical character, light-responsive moieties' incorporation in the membrane, and the lipid bilayer's mechanical properties on membrane response to chemical tuning or energy input. To observe how lipid chemistry affects membrane physical properties …


Atomistic Simulation Of Na+ And Cl- Ions Binding Mechanisms To Tobermorite 14Å As A Model For Alkali Activated Cements, Ahmed Abdelkawy Jan 2022

Atomistic Simulation Of Na+ And Cl- Ions Binding Mechanisms To Tobermorite 14Å As A Model For Alkali Activated Cements, Ahmed Abdelkawy

Theses and Dissertations

The production of ordinary Portland cement (OPC) is responsible for ~8% of all man-made CO2 emissions. Unfortunately, due to the continuous increase in the number of construction projects, and since virtually all projects depend on hardened cement from the hydration of OPC as the main binding material, the production of OPC is not expected to decrease. Alkali-activated cement produced from the alkaline activation of byproducts of industries, such as iron and coal industries, or processed clays represents a potential substitute for OPC. However, the interaction of the reaction products of AAC with corrosive ions from the environment, such as Cl-, …


Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva Jan 2022

Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva

Dissertations, Master's Theses and Master's Reports

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments. The focus of this thesis is 2D materials especially graphene and BN studied using density functional theory (DFT) and molecular dynamics (MD) simulations. In the first half of the thesis, the electronic structure and optical properties are discussed for graphene, antimonene, and borophene. It is found that the absorbance in (atomically flat) multilayer antimonene (group …


Using Powder Diffraction To Give Insight Into Structures Of Ir2(Diisocyanomenthane)4x2 [Dimen] (X = Cl; Pf6; Bph4), Mairead Brownell Jan 2022

Using Powder Diffraction To Give Insight Into Structures Of Ir2(Diisocyanomenthane)4x2 [Dimen] (X = Cl; Pf6; Bph4), Mairead Brownell

Scripps Senior Theses

Ir2(dimen)42+ (dimen = 1,8-diisocyanomenthane) has been studied extensively as model compound to better understand catalysis of photochemical reactions. Although Ir2(dimen)42+ has been used primarily to observe the photophysical changes of metal-metal transitions, it gives great insight into the transitions that allow other d8-d8 metal complexes to undergo photochemical processes and generate hydrogen gas. The large visible range by which Ir2(dimen)42+ (1) can be electronically excited in solution is indicative of its two solution phase ground states, which interestingly have been hypothesized to resemble two unique packing structures observed in the powder state. In this study, the powder diffraction patterns of …


Charge Transfer Mediated Triplet Excited State Formation In Donor-Acceptor-Donor Bodipy: Application For Recording Of Holographic Structures In Photopolymerizable Glass, Tatsiana Mikulchyk, Safakath Karuthedath, Catherine S.P. De Castro, Andrey A. Buglak, Aimee Sheehan, Aaron Wieder, FréDéRic Laquai, Izabela Naydenova, Mikhail Filatov Jan 2022

Charge Transfer Mediated Triplet Excited State Formation In Donor-Acceptor-Donor Bodipy: Application For Recording Of Holographic Structures In Photopolymerizable Glass, Tatsiana Mikulchyk, Safakath Karuthedath, Catherine S.P. De Castro, Andrey A. Buglak, Aimee Sheehan, Aaron Wieder, FréDéRic Laquai, Izabela Naydenova, Mikhail Filatov

Articles

Donor–acceptor–donor BODIPY triads bearing anthracene or pyrene as electron donating subunits were prepared through a stepwise synthesis. Photoinduced electron transfer and formation of long-lived triplet excited states via spin–orbit charge transfer intersystem crossing (SOCT-ISC) was studied by steady-state and ultrafast pump-probe spectroscopy and further supported by DFT computations. New BODIPYs were found to form triplet states and sensitize singlet oxygen in both polar and non-polar solvents which is unusual for photosensitizers operating via SOCT-ISC. BODIPY-anthracene triad (ABA) was used as a photosensitizer component in a photopolymerizable glass that was prepared by a four-step sol–gel process. ABA in combination with N …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …


From Evaluating The Performance Of Approximations In Density Functional Theory To A Machine Learning Design, Pedram Tavazohi Jan 2022

From Evaluating The Performance Of Approximations In Density Functional Theory To A Machine Learning Design, Pedram Tavazohi

Graduate Theses, Dissertations, and Problem Reports

Density-functional theory (DFT) has gained popularity because of its ability to predict the properties of a large group of materials a priori. Even though DFT is exact, there are inaccuracies introduced into the theory due to the approximations in the exchange-correlation (XC) functionals. Over the 50 years of its existence, scientists have tried to improve the design of the XC functionals. The errors introduced by these functionals are not consistent across all types of solid-state materials. In this project, a high throughput framework was utilized to compare the theoretical DFT predictions with the experimental results available in the Inorganic Crystal …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


High Speed Impact On Graphene Composites, Giovanny A. Espitia Aug 2021

High Speed Impact On Graphene Composites, Giovanny A. Espitia

Symposium of Student Scholars

Since the isolation of Graphene occurred in 2004, numerous studies attempting to exploit the properties of this carbon allotrope have been conducted. Graphene exists in a 2-D manner with sp2 bonds, which provides the allotrope with great electrical, conductive, and mechanical properties. In this paper however, we will focus on the latter in order to examine the feasibility of graphene composites for bulletproof material in the military. Pure graphene sheets count with high porosity density that leads to structural defects as well as poor mechanical properties due to physical contact being sole retainer. For this reason, the selected composite is …


Characterization Of Lamellar Liquid Crystal Emulsifiers In Topical Creams Containing A Novel Solvent, Melinda Joanna Sutton Aug 2021

Characterization Of Lamellar Liquid Crystal Emulsifiers In Topical Creams Containing A Novel Solvent, Melinda Joanna Sutton

MSU Graduate Theses

Diethylene glycol monoethyl ether (DEGEE) is a promising solvent component in topical cream formulations due to its superior solubilizing abilities with certain active pharmaceutical ingredients. One of the goals of this study is to characterize the effects of pH on the physical and chemical stabilities of topical cream formulations containing particularly high concentrations of DEGEE by characterizing a full topical pH profile of 3.5 – 9.0. The second goal is to evaluate the presence, amount, and characteristics of lyotropic liquid crystals (LLCs), molecularly structured in a lamellar phase, in a model cream emulsion utilizing polarized light microscopy (PLM). The presence …


Photovoltages In Polycrystalline Mosaic Solar Cells, Steluta A. Dinca, Eric A. Schiff Jul 2021

Photovoltages In Polycrystalline Mosaic Solar Cells, Steluta A. Dinca, Eric A. Schiff

Chemistry - All Scholarship

In some thin-film solar cells the light-absorbing layer is a mosaic of crystalline grains whose boundaries run from the back to the front of the cell. We used the semiconductor modeling software Sesame to do numerical calculations of the optoelectronic properties of such cells assuming that recombination of minority photocarriers occurs primarily at the grain boundaries. The work complements analytical results for diffusion-limited recombination at grain boundaries and dislocations. We chose idealized n-CdS/p-CdTe solar cells for illustration. We find that the open-circuit voltage, Voc, under illumination declines logarithmically with increasing ratio D/θ2, where D is the …


Data-Driven Approaches To Complex Materials: Applications To Amorphous Solids, Dil Kumar Limbu May 2021

Data-Driven Approaches To Complex Materials: Applications To Amorphous Solids, Dil Kumar Limbu

Dissertations

While conventional approaches to materials modeling made significant contributions and advanced our understanding of materials properties in the past decades, these approaches often cannot be applied to disordered materials (e.g., glasses) for which accurate total-energy functionals or forces are either not available or it is infeasible to employ due to computational complexities associated with modeling disordered solids in the absence of translational symmetry. In this dissertation, a number of information-driven probabilistic methods were developed for the structural determination of a range of materials including disordered solids to transition metal clusters. The ground-state structures of transition-metal clusters of iron, nickel, and …