Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Massachusetts Amherst

Discipline
Keyword
Publication Year
Publication

Articles 1 - 19 of 19

Full-Text Articles in Inorganic Chemistry

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre Mar 2024

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre

Doctoral Dissertations

Polyoxometalates (POMs) are a class of inorganic molecule of increasing interest to the inorganic, bioinorganic and catalytic communities among many others. While their prevalence in research has increased, tools and methodologies for the analysis of their fundamental characteristics still need further development. Decavanadate (V10) specifically has been postulated to have several unique properties that have not been confirmed independently. Mass spectrometry (MS) and its ability to determine the composition of solution phase species by both mass and charge is uniquely well suited to the analysis of POMs. In this work we utilized high-resolution mass spectrometry to characterize V10 in aqueous …


Determining Bond Strengths And Dissociation Dynamics Of Diatomic Metal-Containing Ions By Photofragment Imaging, Schuyler P. Lockwood Apr 2023

Determining Bond Strengths And Dissociation Dynamics Of Diatomic Metal-Containing Ions By Photofragment Imaging, Schuyler P. Lockwood

Doctoral Dissertations

Studies of simple metal ion – ligand complexes have primarily focused on understanding their roles in activating C-H and C-C bonds. However, data are often lacking on the fundamental properties of these species, which can have unusual bond orders and cluttered electronic structures with many states of multi-reference character, complicating their treatment in theoretical studies. Experimental work determining high-precision bond energies, ground state identities and excited state dynamics of a wider variety of metal-containing ions is needed to establish a robust set of well-characterized benchmark molecules. This work describes studies of the energetics and dynamics of several MX+ species, …


Formation Of Doped Semiconductor Nanocrystals From Doped Molecular Clusters, Jillian E. Denhardt Oct 2022

Formation Of Doped Semiconductor Nanocrystals From Doped Molecular Clusters, Jillian E. Denhardt

Doctoral Dissertations

Transition metal doping of semiconductor nanomaterials, particularly magnetic dopant ions, is of great interest for the synthesis of diluted magnetic semiconductors (DMS) with spintronic-based applications. The incorporation of magnetic ions into quantum dots (QDs) would be particularly useful since the quantum confinement of these materials is theorized to enhance magneto-optical related properties. One major challenge in this field is the segregation of dopant ions towards the outer regions of the QD due to the exclusion of dopants during the nucleation process, thereby inhibiting the magneto-optical properties. In this dissertation, we address the dopant segregation challenge by exploring the underlying mechanisms …


Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid Feb 2022

Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid

Doctoral Dissertations

Metal halide perovskite solar cells (PSCs) have revolutionized the field of thin film photovoltaics. Within a decade, the power conversion efficiencies (PCEs) have increased at a phenomenal rate, rising from 3.8% to more than 25% in single-junction devices, moving them ahead of the current silicon-based technology. The high efficiencies of perovskite solar cells (PSCs) and their other unique properties arise from a combination of organic and inorganic components and electronic-ionic conduction, making them excellent candidates for a plethora of applications. However, PSCs face a significant—and ironic—roadblock to commercialization: these light-harvesting materials degrade under sunlight—the very condition they would need …


Manipulating The Aliovalent Magnetic Dopants In Ti(Iv)-Based Oxide Nanocrystals, Muhammad Abdullah Sep 2021

Manipulating The Aliovalent Magnetic Dopants In Ti(Iv)-Based Oxide Nanocrystals, Muhammad Abdullah

Doctoral Dissertations

The intentional incorporation of impurities or dopants in semiconductors is fundamental to manipulate the properties that render them useful for spintronics, photocatalysis, and optoelectronics. One long-standing challenge in integrating the doped semiconductors in various applications is the design of materials with controlled individual dopant properties such as dopants speciation, valence state, and spin dynamics. Despite several elegant studies to circumvent these material challenges, the quest for new materials with tunable dopant properties to address the theoretical and experimental understanding continues. In this work, we combine synthetic chemistry and various spectroscopies to study a class of materials possessing both substitutional magnetic …


Study Of The Role Of Biologically-Relevant, Labile Nickel Pools In The Maturation Of Nickel-Dependent Enzymes, Priyanka Basak Sep 2020

Study Of The Role Of Biologically-Relevant, Labile Nickel Pools In The Maturation Of Nickel-Dependent Enzymes, Priyanka Basak

Doctoral Dissertations

Cellular nickel pools, comprised of static and labile pools of nickel complexes, play important roles in maintaining nickel homeostasis in various organisms (microbes, fungi, and plants), which utilize it as a cofactor of one or more nickel enzymes that catalyze specific reactions and are essential for their proper growth and survival in various ecological niches. Like other metals, tight regulation of cellular nickel levels is critical to prevent toxic effects of nickel deprivation, nickel overload, and ‘free’ nickel. While more static nickel pools include nickel tightly bound to nickel-dependent enzymes, nickel in the labile pool is exchangeable and weakly bound …


Providing Molecular Insight For Understanding Anion Exchange Membrane Conductivity, Michael Kwasny Oct 2019

Providing Molecular Insight For Understanding Anion Exchange Membrane Conductivity, Michael Kwasny

Doctoral Dissertations

Anion exchange membranes (AEMs) are notorious for having both low alkaline stability and poor ion conductivity in fuel cell operation conditions, with solutions to these two challenges often being developed independent of each other. The chemical instability of an AEM is viewed through degradation of the polymer backbone and the cationic species and improving a material’s stability is approached by altering the polymer backbone, the cation, or both. On the other hand, poor ion conductivity is typically addressed by modifying bulk membrane properties such as increasing the ion exchange capacity (IEC), changing the morphology, or increasing the water uptake. These …


Synthesis Of Magnetic Ion Doped Ii-Vi Benzenechalcogenolate Molecular Clusters, Fumitoshi Kato Jul 2019

Synthesis Of Magnetic Ion Doped Ii-Vi Benzenechalcogenolate Molecular Clusters, Fumitoshi Kato

Doctoral Dissertations

Diluted magnetic semiconductor quantum dots (DMS-QDs) is a class of material prepared by introducing a small percentage of magnetic impurities to impart new magneto-optical properties to the host nanocrystal (NC). Such materials are regarded as promising candidates for their potential application in spintronic devices. The overall functionality of the DMS‑QD is highly dependent on the dopant position within the host structure. A thorough understanding of the doping mechanism is, therefore, critical to gain better control over the dopant speciation in nanocrystal lattice and material properties. In this work, we utilized II‑VI molecular clusters that are analogous to bulk semiconductors as …


Modulating Dopant-Defect Interactions In Transition Metal Doped Colloidal Strontium Titanate Nanocrystals, William Harrigan Jul 2019

Modulating Dopant-Defect Interactions In Transition Metal Doped Colloidal Strontium Titanate Nanocrystals, William Harrigan

Doctoral Dissertations

Perovskites such as strontium titanate, a wide band gap semiconductor have been widely studied due to the multitude of potential applications in photocatalysis, multiferroics, sensing, and microelectronics. Various novel optical, electrical and magnetic properties can be imparted through the introduction of different transition metal dopant ions. The introduction of these impurities has been shown to impart functionality for various applications. The use of Cr3+has been shown to introduce defect levels into the band structure of SrTiO3and increase visible light utilization for photocatalysis. Transition metal doped highly crystalline colloidal SrTiO3nanocrystals (NC) were synthesized using two …


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou Nov 2017

Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou

Doctoral Dissertations

Semiconductor nanocrystal doping has stimulated broad interest for many applications including solar energy conversion, nanospintronics, and phosphors or optical labels. The study of the chemistry and physics of doped colloidal semiconductor nanocrystals has been dominated in the literature by isovalent dopants such as Mn2+ and Co2+ ions in II-VI semiconductors, in which the dopant oxidation state is the same as the cation ions. Until recently, aliovalent dopants has received much attention due to the plasmonic properties. Aliovalent is when the oxidation states of the dopant in the lattice differs from the cation ions. In the plasmonic semiconductor nanocrystals, …


Relationship Between Structure And Function In Nickel Proteins And Enzymes, Carolyn Carr Jul 2017

Relationship Between Structure And Function In Nickel Proteins And Enzymes, Carolyn Carr

Doctoral Dissertations

Nickel is a rarely used but biologically important metal that is utilized in all three domains of life. In nickel utilizing organisms there is a corresponding trafficking system specifically designed to capture nickel, deliver, and export excess nickel to prevent toxic effects. It is critical to understand the mechanisms by which organisms achieve metal selectivity to duplicate or disrupt this process for the benefit of human health and to further understanding of regulation mechanisms in biology. RcnR is a Ni(II) and Co(II) responsive transcriptional regulator in E. coli. The research reported in this dissertation focuses on the relationship between …


Dopant-Defect Engineering In Strontium Titanate-Based Materials, Keith Lehuta Mar 2017

Dopant-Defect Engineering In Strontium Titanate-Based Materials, Keith Lehuta

Doctoral Dissertations

Strontium titanate is a wide gap oxide perovskite that has been studied for numerous applications. Its potential use as a photocatalyst is limited due to only being able to utilize UV light. The introduction of metal dopant ions has been shown to alter the band structure to allow visible light photocatalysis, as well as alter the materials properties for other applications. This work will look to better explain the process of transition metal dopant ion incorporation and how the dopant ion can affect the defect chemistry of the material. The use of dopant specific spectroscopies, such as electron paramagnetic resonance …


Specific Phosphate Sorption Mechanisms Of Unaltered And Altered Biochar, Kathryn D. Szerlag Nov 2016

Specific Phosphate Sorption Mechanisms Of Unaltered And Altered Biochar, Kathryn D. Szerlag

Masters Theses

Biochar has been shown to act as an effective sorbent for many organic and inorganic contaminants (including phosphate) and can help to improve the quality of our fresh water resources by preventing eutrophication. Most of the high efficiency biochar phosphate-adsorbent feedstocks are modified with chemical pretreatment, phytoremediation or anaerobic digestion to accumulate desired elements. The main objectives of this project were to first engineer magnesium (Mg) and calcium (Ca) altered biochar by chemical pretreatment followed by pyrolysis at either 350 or 550°C and evaluate their phosphate adsorption rate and potential as compared to their unaltered counterparts. Determination of surface physiochemical …


Magnetic Doping Of Semiconductor Molecular Models And Colloidal Nanocrystals, Swamy Pittala Jul 2016

Magnetic Doping Of Semiconductor Molecular Models And Colloidal Nanocrystals, Swamy Pittala

Doctoral Dissertations

Spin-based electronics use the spins of electrons in addition to their charges and have potential applications to create a next generation of quantum computers, capable of storing vast amounts of data in an energy-efficient way. Diluted magnetic semiconductor quantum dots (DMS-QDs) have shown great promise as ideal materials for application in spin-based electronics. However, doping impurities into quantum confined colloidal nanocrystals (NCs) has been a great challenge due to the lack of control over the dopant reactivity during the specific stages of nucleation and growth. The mechanism of dopant incorporation into nanocrystals is complex and well-defined and atomically precise molecular …


Responsive Supramolecular Assemblies Based On Amphiphilic Polymers And Hybrid Materials, Longyu Li Nov 2015

Responsive Supramolecular Assemblies Based On Amphiphilic Polymers And Hybrid Materials, Longyu Li

Doctoral Dissertations

The design and synthesis of responsive supramolecular assemblies are of great interest due to their applications in a variety of areas such as drug delivery and sensing. We have developed a facile method to prepare self-crosslinking disulfide-based nanogels derived from an amphiphilic random copolymer containing a hydrophilic oligo-(ethylene glycol)-based side-chain functionality and a hydrophobic pyridyl disulfide functional group. This thesis first provides a concept of studying the influence of Hofmeister ions on the size and guest encapsulation stability of a polymeric nanogel. The size and core density of nanogel can be fine-tuned through the addition of both chaotropes and kosmotropes …


Inhibition And Cofactor Targeting Of Hypoxia-Sensing Proteins, Cornelius Y. Taabazuing Aug 2015

Inhibition And Cofactor Targeting Of Hypoxia-Sensing Proteins, Cornelius Y. Taabazuing

Doctoral Dissertations

Hypoxia Inducible Factor (HIF) is a transcription activator considered to be the main regulator of O2 homeostasis in humans. The transcriptional ability of HIF is regulated by the Fe2+/αKG-dependent enzyme, Factor Inhibiting HIF (FIH). FIH uses molecular oxygen to catalyze hydroxylation of an asparagine residue (Asn803) in the C-terminal transactivation domain (CTAD) of the HIFα subunit, abrogating HIF target gene expression. The mechanism of FIH and other αKG-dependent oxygenases involves the ordered sequential binding of αKG, substrate, and O2, which becomes activated to form a reactive ferryl intermediate that hydroxylates the substrate. The …


Structure-Property Relationships At The Nano-Bio Interface: Engineering The Nanoparticle Surface For Immunomodulation, Daniel Fernando Moyano Marino Aug 2015

Structure-Property Relationships At The Nano-Bio Interface: Engineering The Nanoparticle Surface For Immunomodulation, Daniel Fernando Moyano Marino

Doctoral Dissertations

Each year, a variety of novel nanomaterials are being developed with the objective of treating different diseases. However, since nanomaterials are foreign to the human body, one of the principal factors that limit their use is the encounter with the first line of defense from the body: the immune system. If this interaction is not taken into account, an undesired recognition takes place and the efficiency of nanoparticle based therapies is dramatically reduced. As such, understanding the rules that govern this recognition is of prime importance in the field of nanomedicine. Following this line of thoughts (the driving force), the …


Developing Fluorescent Sensors For The Bioimaging Of Chelatable Iron(Iii) Ions, Ziya Aydin Mar 2015

Developing Fluorescent Sensors For The Bioimaging Of Chelatable Iron(Iii) Ions, Ziya Aydin

Doctoral Dissertations

Iron is an essential element for the body and plays important roles in many metabolic processes. A transient labile iron pool (LIP) has been proposed to play key roles in cellular iron trafficking and metabolism. However, free iron ions (Fe3+ and Fe2+) in this pool are toxic and damaging to cells due to their involvement in the production of oxygen radicals. The damages may lead to aging and various diseases including stroke, cancer, and several neurological disorders like Parkinson’s disease, Alzheimer’s disease and atherosclerosis. Determination of free iron ions in cells may contribute to a better understanding …