Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Analytical Chemistry

An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman Sep 2018

An Overview Of Dynamic Heterogeneous Oxidations In The Troposphere, Elizabeth A. Pillar-Little, Marcelo I. Guzman

Chemistry Faculty Publications

Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. …


Investigating The Atmospheric Production Of Perchlorate: Inference From Polar Ice Cores, Thomas S. Cox Jan 2017

Investigating The Atmospheric Production Of Perchlorate: Inference From Polar Ice Cores, Thomas S. Cox

Electronic Theses and Dissertations

Perchlorate (ClO4) in the environment is of concern, because of potential health risks to humans, among other reasons. Evidence suggests that the majority of environmental perchlorate is formed in the atmosphere (likely in the stratosphere), in chemical processes involving ozone and stratospheric chlorine. A lack of knowledge in regards to the processes has resulted in a limited understanding of the environmental conditions and variables that influence perchlorate production and consequently perchlorate prevalence and variability in the environment. In this study, perchlorate was measured, using an established ion chromatography-­‐electrospray ionization-­‐tandem mass spectrometry (IC-­‐ESI-­‐ MS/MS) technique, in over 1,600 snowpit …


Mechanisms Of Heterogeneous Oxidations At Model Aerosol Interfaces By Ozone And Hydroxyl Radicals, Elizabeth A. Pillar-Little Jan 2017

Mechanisms Of Heterogeneous Oxidations At Model Aerosol Interfaces By Ozone And Hydroxyl Radicals, Elizabeth A. Pillar-Little

Theses and Dissertations--Chemistry

Atmospheric aerosols play an important role in climate by scattering and absorbing radiation and by serving as cloud condensation nuclei. An aerosol’s optical or nucleation properties are driven by its chemical composition. Chemical aging of aerosols by atmospheric oxidants, such as ozone, alters the physiochemical properties of aerosol to become more hygroscopic, light absorbing, and viscous during transport. However the mechanism of these transformations is poorly understood. While ozone is a protective and beneficial atmospheric gas in the stratosphere, it is a potent greenhouse gas in the troposphere that traps heat near the Earth’s surface. It also impacts human heath …


Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman Sep 2015

Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air–solid interface under variable relative humidity (RH = 0–90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10–6 occurs for …


Catechol Oxidation By Ozone And Hydroxyl Radicals At The Air-Water Interface, Elizabeth A. Pillar, Robert C. Camm, Marcelo I. Guzman Nov 2014

Catechol Oxidation By Ozone And Hydroxyl Radicals At The Air-Water Interface, Elizabeth A. Pillar, Robert C. Camm, Marcelo I. Guzman

Chemistry Faculty Publications

Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air–water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon …


Conversion Of Iodide To Hypoiodous Acid And Iodine In Aqueous Microdroplets Exposed To Ozone, Elizabeth A. Pillar, Marcelo I. Guzman, Jose M. Rodriguez Oct 2013

Conversion Of Iodide To Hypoiodous Acid And Iodine In Aqueous Microdroplets Exposed To Ozone, Elizabeth A. Pillar, Marcelo I. Guzman, Jose M. Rodriguez

Chemistry Faculty Publications

Halides are incorporated into aerosol sea spray, where they start the catalytic destruction of ozone (O3) over the oceans and affect the global troposphere. Two intriguing environmental problems undergoing continuous research are (1) to understand how reactive gas phase molecular halogens are directly produced from inorganic halides exposed to O3 and (2) to constrain the environmental factors that control this interfacial process. This paper presents a laboratory study of the reaction of O3 at variable iodide (I) concentration (0.010–100 μM) for solutions aerosolized at 25 °C, which reveal remarkable differences in the reaction intermediates …


Strawberry Growth, Yield, Fruit Nutrition, And Control Of Verticillium Wilt With Pre-Plant Soil Fumigants, Ozone, And Biological Control, Justin J. Scurich Apr 2012

Strawberry Growth, Yield, Fruit Nutrition, And Control Of Verticillium Wilt With Pre-Plant Soil Fumigants, Ozone, And Biological Control, Justin J. Scurich

Master's Theses

Verticillium wilt is a widespread soilborne disease of strawberry historically controlled by soil fumigation with methyl bromide (MB). MB was banned by the United Nations in 1995 and will be completely phased out by 2015. Research has concentrated on alternative methods of disease control without finding a single alternative able to replace MB in widespread disease control and yield increase. For the current study, strawberries were greenhouse grown in container pots filled with soil from both infested and non-infested areas of a commercial strawberry field in Watsonville, CA. Treatments included pre-plant soil fumigation with commercially available formulations of methyl bromide, …


Experimental Design For Ozone Projects, Deborah Carlisle, Stephen Schneider Jan 2011

Experimental Design For Ozone Projects, Deborah Carlisle, Stephen Schneider

STEM Digital

No abstract provided.