Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Analytical Chemistry

Cysteine And Cystamine Co-Self-Assembled Monolayers For In Vivo Detection Of Ascorbic Acid, Yue Zhang, Tao-Tao Feng, Wen-Liang Ji, Mei-Ning Zhang Jun 2019

Cysteine And Cystamine Co-Self-Assembled Monolayers For In Vivo Detection Of Ascorbic Acid, Yue Zhang, Tao-Tao Feng, Wen-Liang Ji, Mei-Ning Zhang

Journal of Electrochemistry

Self-assembled monolayers (SAMs), which form highly ordered monolayers on the electrode surface through the gold-suffer bond, have attracted much attention in recent years. This stable layer not only can regulate the wettable properties of surface, but also can act as a promoter towards redox-active molecules. Here, we developed a simple and effective method to construct cysteine and cystamine co-self-assembled monolayer on gold microelectrode for in vivo detection of ascorbic acid (AA). The molar ratio at 1:1 of mixed monolayer has been found the optimum to enhance the electron-transfer kinetics of AA oxidation at low potential (ca. 0.10 V), meanwhile, it …


Advanced Electrochemical Strategy For In Vivo Detection Of Electrochemically Inactive Molecules, Zhou Qi, Zhang Li-Min, Tian Yang Apr 2019

Advanced Electrochemical Strategy For In Vivo Detection Of Electrochemically Inactive Molecules, Zhou Qi, Zhang Li-Min, Tian Yang

Journal of Electrochemistry

Development of efficient electrochemical strategies for in vivo analysis of electrochemically inactive molecules in brain is significant for understanding and studying their molecular mechanism and roles playing in brain and brain diseases. This review gives a brief introduction on the advanced in vivo electrochemical sensor for detection of non-redox active molecules from three aspects: 1) The selection and design of specific molecules are highly desirable to develop electrochemical sensors with high selectivity for measuring electrochemical inactive molecules through converting specific chemical reaction involved by target to electric signal; 2) The analysis based on ion current rectification occurred at spatial confined …


A Facile Strategy For Two-Step Fabrication Of Gold Nanoelectrode For In Vivo Dopamine Detection, Li-Hao Guan, Chao Wang, Wang Zhang, Yu-Lu Cai, Kai Li, Yu-Qing Lin Apr 2019

A Facile Strategy For Two-Step Fabrication Of Gold Nanoelectrode For In Vivo Dopamine Detection, Li-Hao Guan, Chao Wang, Wang Zhang, Yu-Lu Cai, Kai Li, Yu-Qing Lin

Journal of Electrochemistry

In vivo monitoring neurochemicals with microelectrode is invasive and the damage to brain tissue may inevitably cause disturbance signals physiologically to the measurement. It is of great importance to reduce the electrode size and to decrease the damage. This study demonstrates a novel nanoelectrode preparation methodology for in vivo monitoring dopamine (DA) fluctuation in the living brain of rats with high dependability. The fabrication process of the gold nanoelectrode involving a few minutes consists of only two steps: 1) growing gold nanoseeds on surface of tip of glassy capillary by ion sputtering; 2) wet depositing a continuous conductive gold film …


Scale Up Isolation Of Aaptamine For In Vivo Evaluation Indicates Its Neurobiological Activity Is Linked To The Delta Opioid Receptor, Nicole L. Mcintosh, Eptisam Lambo, Laura Millan-Lobo, Fei Li, Li He, Phillip Crews, Jennifer L. Whistler, Tyler Johnson Mar 2019

Scale Up Isolation Of Aaptamine For In Vivo Evaluation Indicates Its Neurobiological Activity Is Linked To The Delta Opioid Receptor, Nicole L. Mcintosh, Eptisam Lambo, Laura Millan-Lobo, Fei Li, Li He, Phillip Crews, Jennifer L. Whistler, Tyler Johnson

Tyler Johnson

Opioid receptors belong to the large superfamily of seven transmembrane-spanning (7TM) G protein-coupled receptors (GPCRs). As a class, GPCRs are of fundamental physiological importance mediating the actions of the majority of known neurotransmitters and hormones. The Mu, Delta, and Kappa (MOP, DOP, KOP) opioid receptors are particularly intriguing members of this receptor family as they are the targets involved in many neurobiological diseases such as addiction, pain, stress, anxiety, and depression. Recently we discovered that the aaptamine class of marine sponge derived natural products exhibit selective agonist activity in vitro for the DOP versus MOP receptor. Our findings may explain …