Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Analytical Chemistry

An Electrochemical Instrument For The Analysis Of Heavy Metals In Water Via Anodic Stripping Coulometry For Applications In Remote Sensing., Kelsey Lynn Kaht Dec 2019

An Electrochemical Instrument For The Analysis Of Heavy Metals In Water Via Anodic Stripping Coulometry For Applications In Remote Sensing., Kelsey Lynn Kaht

Electronic Theses and Dissertations

From the high levels of arsenic in groundwater in Bangladesh to the lead contamination of drinking water in Flint, Michigan, there are incidents across the globe that highlight the need for a reliable instrument capable of monitoring heavy metals remotely and continuously in a variety of geographical locations. Typical instrumentation for water analysis, such as ICP and AAS, must be housed in a central lab and relies on an operator traveling to the collection site, obtaining a sample, and transporting it back to the lab. This analysis provides a snapshot of the water quality that is limited to the specific …


Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan Aug 2019

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan

Graduate Theses and Dissertations

In this work, a novel microfluidic pumping approach, redox-magnetohydrodynamics (R-MHD) has improved by materials and device optimization to use in lab-on-a-chip applications. In R-MHD, magnetic flux (B) and ionic current density (j) interacts to generate body force (FB) in between active electrodes, according to the equation FB = j×B. This unique fluid pumping approach is scalable, tunable, generates flat flow profile, and does not require any channels or valves. Pumping performance, such as speed scales with the ionic current density (j) and duration depends on the total charge (Q). The ionic current density (j) results from the conversion of electronic …


Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou Jun 2019

Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou

Journal of Electrochemistry

Single particle impact electrochemistry (SPIEC) has grown rapidly in recent years and shown great promise in the analysis of nanoparticle properties as well as the detection of biomolecules including DNA, RNA, protein, enzyme, bacteria, virus, vesicles and others. This minireview summarizes recent advances in electroanalytical applications of SPIEC according to different analytical methods, i.e., direct electrolysis of nanoparticles or labeled nanoparticles, direct electrolysis of soft particles encapsulated redox molecule, indirect electrochemistry of particles, area and diffusion blocking, and changes in current magnitude and collision frequency.


Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia Jun 2019

Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia

Journal of Electrochemistry

Nanofluidics, as a young research field, has been receiving more and more attentions. It has been successfully applied in various fields including nanoscale separation, biochemical sensing and energy conversion. The development of nanofluidics is closely related to electrochemistry that can provide a driving force for the study of the material transport characteristics in nanopores/nanochannels. On the other hand, nanopores/nanochannels can creat a microenvironment for study of spatially nanoconfined electrochemistry. The combination of nanofluidics and electrochemistry has given rise to many new theories and technologies for single molecule/particle analysis and nanofluid manipulation. Herein, we provide a review of the recent progresses …


A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long Jun 2019

A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long

Journal of Electrochemistry

Nanopore employs a single bio-molecule interface, which is a highly sensitive single-molecule detection technology for measuring single biomolecules such as DNA, RNA, protein, and peptide. The interaction between single molecule and nanopore is thermodynamically controlled. Therefore, it is urgent to precisely control the temperature of the nanopore system without introduction of any noise. In this paper, we have developed a low-noise temperature control system for single-molecule detection of nanopores to achieve precise regulation at the ambient temperature during measurements. The system utilizes the thermoelectric effect of the semiconductor refrigerating chip to heat or cool the detection chamber, while adopts electromagnetically …


Corrosion Studies On Lightweight Automotive Alloys: The Effect Of Microstructure And Fundamental Mechanisms, Wilfred J. Binns Mar 2019

Corrosion Studies On Lightweight Automotive Alloys: The Effect Of Microstructure And Fundamental Mechanisms, Wilfred J. Binns

Electronic Thesis and Dissertation Repository

Owing to their excellent strength-to-weight ratio and low density, magnesium alloys have the potential to significantly reduce the weight of automobiles leading to decreased emissions and greater range for electrical vehicles. However, the practicality of magnesium alloys for automotive and aerospace applications is severely hindered by their poor corrosion resistance in aqueous environments. Despite intensive research effort, the underlying mechanism(s) responsible for this poor corrosion resistance remains elusive. Further complicating the situation is the presence of secondary microstructures which are necessary for desirable physical properties but lead to microgalvanic coupling which exacerbates the poor corrosion resistance of magnesium alloys. This …


Electrochemical Detection Of Fentanyl Using Screen-Printed Carbon Electrodes With Confirmatory Analysis Of Fentanyl And Its Analogs In Oral Fluid Using Liquid Chromatography-Tandem Mass Spectrometry, Colby E. Ott Jan 2019

Electrochemical Detection Of Fentanyl Using Screen-Printed Carbon Electrodes With Confirmatory Analysis Of Fentanyl And Its Analogs In Oral Fluid Using Liquid Chromatography-Tandem Mass Spectrometry, Colby E. Ott

Graduate Theses, Dissertations, and Problem Reports

Utilizing screen-printed carbon electrodes (SPCEs), a fast, simple, and sensitive approach toward the detection, identification, and quasi-quantitation of fentanyl was achieved both in an electrochemical cell and as a drop on the electrode surface. Electro-oxidation of fentanyl at the electrode was demonstrated using adsorptive stripping square-wave voltammetry between -0.5 V and +1.6 V with 100 mM Tris-HCl buffer at pH 8.5 as supporting electrolyte. Parameter optimization was conducted during method development to include supporting electrolyte and pH, electrochemical technique, pre-treatment and equilibration time, and various surface modifications. The simplest method utilizing an unmodified SPCE was determined to be appropriate for …


Permanently Heated Micro-Wire Electrodes For Electrochemistry Above The Boiling Point, Zhihua Chang Jan 2019

Permanently Heated Micro-Wire Electrodes For Electrochemistry Above The Boiling Point, Zhihua Chang

Legacy Theses & Dissertations (2009 - 2024)

Heated micro-wire electrodes offer lots of advantages, such as, accurate temperature control, enhanced diffusion and accelerated reaction kinetics through micro-stirring effect, easy cleaning, and low cost, etc. Its application in high temperature electrochemistry has gained lots of interests since its debut in the mid-1990s. A maximum of 250 °C has been reported using heating pulses in duration of 5 ms. For various applications, permanently heating would be more useful. In this study, two types of micro-wire electrodes were successfully developed for electrochemistry above the boiling point with acetaminophen as model compound and a continuous heating time of at least 2 …