Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Physical Chemistry

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 51

Full-Text Articles in Analytical Chemistry

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong Dec 2019

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong

Journal of Electrochemistry

P-nitrothiophenol (PNTP) is one of the most common probe molecules studied by surface-enhanced Raman spectroscopy (SERS). The research in electrochemical reduction behavior of PNTP will help understanding the mechanism for the nitrobenzene reduction. In this paper, we used transient electrochemical surface-enhanced Raman spectroscopy (TEC-SERS) to study the SERS of PNTP with cyclic voltammetry and chronoamperometry on gold electrodes. The results show that the TEC-SERS provide a time resolution that equals the transient electrochemical methods, and we concluded that the reaction was so quick that we did not observe the spectral information of intermediate species described in the literatures with a …


Quantitative Detection Of Levofloxacin Hydrochloride By Differential Pulse Stripping Voltammetry With Electrodeposited Bismuth Film Electrodes, Zi-Ying Guo, Zuo-Peng Li, Jiang Li, Jian-Guo Zhao, Feng Feng Dec 2019

Quantitative Detection Of Levofloxacin Hydrochloride By Differential Pulse Stripping Voltammetry With Electrodeposited Bismuth Film Electrodes, Zi-Ying Guo, Zuo-Peng Li, Jiang Li, Jian-Guo Zhao, Feng Feng

Journal of Electrochemistry

In this study, differential pulse stripping voltammetry was developed for the quantitative detection of levofloxacin hydrochloride indirectly. Levofloxacin hydrochloride contains organic amine, which can be precipitated upon interaction with Zn(SCN)42-. By means of differential pulse stripping voltammetry, the concentration of Zn2+ can be determined using an in-situ formed bismuth film electrode, which allows determining indirectly the amount of levofloxacine hydrochloride. The linearity equation, I = 1.1401c - 0.5309 with the correlative coefficient R = 0.9979, was presented in the experiment. The results showed that this approach is very sensitive, having a limitation of detection of 3.18 …


Electrochemical Sensor Based On Magnetic Electrode Modified With Magnetic Molecularly Imprinted Nanoparticles Immobilized Hemoglobin For Determination Of Hydrogen Peroxide, Yang Yuan, Jia-Xin Wang, Yu-Hua Cao Dec 2019

Electrochemical Sensor Based On Magnetic Electrode Modified With Magnetic Molecularly Imprinted Nanoparticles Immobilized Hemoglobin For Determination Of Hydrogen Peroxide, Yang Yuan, Jia-Xin Wang, Yu-Hua Cao

Journal of Electrochemistry

In this work, the surface-imprinted technique was used to prepare magnetic hemoglobin (Hb) imprinted nanoparticles, using Fe3O4@SiO2 NPs as the carrier, Hb as the template molecule, and tetraethyl orthosilicate (TEOS) as the imprinted polymer monomer. The nanoparticles had a core-shell structure, with magnetic Fe3O4 NPs as the core and Hb imprinted polymers as the shell. Therefore, Hb could be concentrated and fixed on the surface of the magnetic imprinted nanoparticles (MMIPs NPs). Furthermore, MMIPs NPs were immobilized with chitosan (CS) on the surface of a magnetic electrode to constitute Hb enzyme-like biosensor …


An Aptasensor Based On Aunps/Pani/Tnts Nanocomposite For Electrochemical Detection Of Tobramycin, Yong-Ling Nong, Ni-Na Qiao, Ying Liang Dec 2019

An Aptasensor Based On Aunps/Pani/Tnts Nanocomposite For Electrochemical Detection Of Tobramycin, Yong-Ling Nong, Ni-Na Qiao, Ying Liang

Journal of Electrochemistry

A novel well-constructed electrochemical aptamer-based sensor for the detection of tobramycin was presented, using differential pulse voltammetry (DPV) as a detection technique and methylene blue(MB) as an electrochemical indicator. A glassy carbon electrode modified with a nanocomposite of Au nanoparticles/polyaniline/titania nanotubes (AuNPs/PANI/TNTs) was constructed as the electrode scaffold. The nanocomposite was characterized by transmission electron microscopy and X-ray photoelectron spectroscopy in detail. The results of cyclic voltammetry and electrochemical impedance measurements demonstrated that the AuNPs/PANI/TNTs nanocomposites can improve greatly the electron transfer on the interface. For the detection of tobramycin, the DPV results showed a linear relationship between the current …


Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr Dec 2019

Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr

Civil and Environmental Engineering Theses and Dissertations

The development of effective treatment processes for the removal contaminants, such as fluoride and heavy metals, from polluted water have been urgently needed due to serious environmental health and safety concerns. In this dissertation, a variety of materials including various (hydro)oxide nanomaterials, biochars and surface modified biochar were studied to evaluate their effectiveness and mechanism on removing fluoride or mixed heavy metals from water.

In the Chapter 2, this study investigated the adsorptive removal of fluoride from water using various (hydro)oxide nanomaterials, focusing on ferrihydrite, hydroxyapatite (HAP) and brucite, which have the potential to be used as sorbents for surface …


Understanding And Controlling Lithium Microstructure During Electroplating For Energy Applications, Yang Tian Dec 2019

Understanding And Controlling Lithium Microstructure During Electroplating For Energy Applications, Yang Tian

Graduate Theses and Dissertations

Lithium-ion batteries are reaching the specific theoretical capacity limit, while lithium metal batteries are regarded as the ideal energy storage system for the next generation “beyond lithium-ion” battery systems. The lithium metal anode is considered as the “Holy grail” of anodes due to its relatively low electrochemical potential (-3.04 V vs SHE) and high theoretical capacity (3860 mAh g-1). However, the application of lithium metal anodes is hindered because of significant reaction between metallic lithium and electrolytes, as well as uneven electro-plating, which leads to dendrite formation, causing safety problems.

The kinetic parameters of Li ions such as diffusion coefficient …


Methodologies For Metal Functionalization Of Phosphorus Based Photopolymer Networks, Vanessa Béland Oct 2019

Methodologies For Metal Functionalization Of Phosphorus Based Photopolymer Networks, Vanessa Béland

Electronic Thesis and Dissertation Repository

Photopolymer networks with phosphonium cation, alkyl phosphine and olefin functionality were designed, synthesized and functionalized with metals by metathesis, coordination and hydrometallation reactions, respectively. The materials were strategically designed so that the metal functionalization step could be monitored and quantified. In some cases, this involved characterization by IR, NMR, or X-ray spectroscopic techniques, or by comparison to molecular analogues. It was found that by using a bi-functional photopolymer network, the material could be bi-metallized by orthogonal mechanisms. All metallized polymer networks were tested for their suitability as precursors to metal-containing ceramics. The polymers were pyrolyzed, and on analysis it was …


It's Elementary: A Review Of Forensic Analysis Techniques Of Inorganic Components Of Explosives, Sadie Schultz Oct 2019

It's Elementary: A Review Of Forensic Analysis Techniques Of Inorganic Components Of Explosives, Sadie Schultz

Chemistry & Biochemistry Student Projects

No abstract provided.


Antioxidants And Beta-Carotene: A General Overview, A Research History, And Modern Scholarship, James Joseph Dickman Iv Oct 2019

Antioxidants And Beta-Carotene: A General Overview, A Research History, And Modern Scholarship, James Joseph Dickman Iv

Chemistry & Biochemistry Student Projects

This paper seeks to provide a cursory overview of oxidative stress and the accompanying biomolecules which are used to combat it. From there, the paper will provide a somewhat comprehensive list of major historical discoveries regarding antioxidant molecules, in particular beta-carotene. After this, an overview of more modern scholarship on the issue of these molecule’s antioxidant properties specific (from the 1970s onward) will be discussed up to modern times. The paper will conclude with an in depth look at the modern scholarship on beta-carotene that was performed here at Taylor University.


Bone Regeneration Via Inorganic/Organic Compatibility In A Newly Synthesized Hydrogel: Nhap-Bmp-2, Hannah Ewing Oct 2019

Bone Regeneration Via Inorganic/Organic Compatibility In A Newly Synthesized Hydrogel: Nhap-Bmp-2, Hannah Ewing

Chemistry & Biochemistry Student Projects

In this paper, nHAp-BMP-2 hydrogel is carefully synthesized in order to optimize the organic and inorganic compatibility which induces osteogenesis—the formation of new bone. This new method is a novel development within the medical field, giving more hope to those suffering from traumatic bone injuries. A drawback with using hydrogels is the difficulty of controlling peptide release in the affected areas. Too quick of a release alarms the human inflammatory response resulting in more substantial injury and an even prolonged recovery time. On the other hand, if the peptides that promote bioactivity are released too slowly, the bone will not …


Quantum Chemical Methods: Its History And Future, Erica Mitchell Oct 2019

Quantum Chemical Methods: Its History And Future, Erica Mitchell

Chemistry & Biochemistry Student Projects

No abstract provided.


Significance And Implications Of Vitamin B-12 Reaction Shema- Eth Zurich Variant: Mechanisms And Insights, David Joshua Ferguson Oct 2019

Significance And Implications Of Vitamin B-12 Reaction Shema- Eth Zurich Variant: Mechanisms And Insights, David Joshua Ferguson

Chemistry & Biochemistry Student Projects

This is an undergraduate chemistry thesis document. This involves a discussion of the mechanisms and overall reactions involved in the total synthesis of vitamin B-12.


The History And Development Of Identification: Rediscovery And Application Of Egyptian Blue, Bailee Allen Oct 2019

The History And Development Of Identification: Rediscovery And Application Of Egyptian Blue, Bailee Allen

Chemistry & Biochemistry Student Projects

The use of fingerprints as a form of identification in criminal cases has become a common method of conviction within the criminal justice system. However, with the recent rise in the number of people wrongly convicted, the typical sources of evidence have come into question about their reliability. Multiple common drawbacks found when using fingerprints dusting to obtain prints from crime scenes has led to researchers looking for more efficient ways to collect them that maintain high sensitivity and contrast. These are the two aspects that create the largest problem, especially on highly reflective and highly patterned surfaces. The discovery …


The Chemistry Of Jellybeans, Andrew Carter Oct 2019

The Chemistry Of Jellybeans, Andrew Carter

Chemistry & Biochemistry Student Projects

Jellybeans are an amazing work of chemistry. In my paper, I outline the history and science behind this little candy. My paper describes taste receptors, molecular structure, and the analytical chemistry that help to make flavor science an interesting field of work.


Metallodrugs And Their Various Impacts On Disorders And Diseases, Paige Wagner Oct 2019

Metallodrugs And Their Various Impacts On Disorders And Diseases, Paige Wagner

Chemistry & Biochemistry Student Projects

No abstract provided.


Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman Sep 2019

Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The photochemistry of pyruvic acid (PA) in aqueous atmospheric particles contributes to the production of secondary organic aerosols. This work investigates the fate of ketyl and acetyl radicals produced during the photolysis (λ ≥ 305 nm) of 5-100 mM PA under steady state [O2(aq)] = 260 μM (1.0 ≤ pH ≤ 4.5) for photon fluxes between 1 and 10 suns. The radicals diffuse quickly into the water/air interface of microbubbles and react with dissolved O2 to produce singlet oxygen (1O2*). Furfuryl alcohol is used to trap and bracket the steady-state production of …


Electrochemical Detection Of 4-Nitrophenol Based On Glassy Carbon Electrode Modified By Tio2Nps/Rgo Composite, Lin-Na Jiu, Yong-Qiang Cheng Aug 2019

Electrochemical Detection Of 4-Nitrophenol Based On Glassy Carbon Electrode Modified By Tio2Nps/Rgo Composite, Lin-Na Jiu, Yong-Qiang Cheng

Journal of Electrochemistry

4-nitrophenol (4-NP) has become factitious pollution, and presented a serious threat to the nature and human health. It is necessary to develop a convenient and fast detection method. In this work, the glassy carbon electrode modified by titanium dioxide nanoparticles (TiO2NPs)/reduced graphene oxide (RGO) composite as an electrochemical sensor was studied for the trace detection of 4-NP. The morphology of the composite was characterized by scanning electron microscopy (SEM). The homogeneous mixing of titanium dioxide nanoparticles and reduced graphene oxide increased the specific surface area of the composite, and facilitated the electrochemical reaction of 4-NP. The electrochemical characteristics …


Synchrotron Radiation Analysis Of Daguerreotypes: Surface Characterization, Electrocleaning, And Preservation, Madalena S. Kozachuk Jul 2019

Synchrotron Radiation Analysis Of Daguerreotypes: Surface Characterization, Electrocleaning, And Preservation, Madalena S. Kozachuk

Electronic Thesis and Dissertation Repository

The first commercially viable photographic image, the daguerreotype, captured images from 1839 to 1860. While daguerreotypes provide a significant historical record of 19th century individuals and events, deterioration now disfigures many of these images. This work describes the application of synchrotron radiation (SR) to the study of daguerreotypes.

Three goals were addressed in this thesis: 1) to utilize SR to further elucidate the physics and chemistry of the daguerreotype and how the surface varies with time, 2) to study the effects of the electrocleaning system on the daguerreotype surface, and 3) to propose suggestions to improve their preservation and …


Electrochemical Biosensors For Wastewater-Based Epidemiology, Yu-Wei Pan, Kang Mao, Franziska Tuerk, Zhu-Gen Yang Jun 2019

Electrochemical Biosensors For Wastewater-Based Epidemiology, Yu-Wei Pan, Kang Mao, Franziska Tuerk, Zhu-Gen Yang

Journal of Electrochemistry

Wastewater-based epidemiology (WBE) has been shown to be an innovative approach for evaluation of drug use trends and public health assessment by quantifying drug residues and/or metabolites (so-called biomarkers) in wastewater collected in a local treatment plant. Community sewage sensors have been proposed and demonstrated to be powerful tools for the analysis of sewage biomarkers. In particular, electrochemical biosensors have emerged as a rapid method for the analysis of biomarkers and pathogens in wastewater due to low cost, minimal sample processing and the ability to test in the field. It has been widely used for biomedical diagnosis, environmental monitoring and …


Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou Jun 2019

Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou

Journal of Electrochemistry

Single particle impact electrochemistry (SPIEC) has grown rapidly in recent years and shown great promise in the analysis of nanoparticle properties as well as the detection of biomolecules including DNA, RNA, protein, enzyme, bacteria, virus, vesicles and others. This minireview summarizes recent advances in electroanalytical applications of SPIEC according to different analytical methods, i.e., direct electrolysis of nanoparticles or labeled nanoparticles, direct electrolysis of soft particles encapsulated redox molecule, indirect electrochemistry of particles, area and diffusion blocking, and changes in current magnitude and collision frequency.


Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia Jun 2019

Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia

Journal of Electrochemistry

Nanofluidics, as a young research field, has been receiving more and more attentions. It has been successfully applied in various fields including nanoscale separation, biochemical sensing and energy conversion. The development of nanofluidics is closely related to electrochemistry that can provide a driving force for the study of the material transport characteristics in nanopores/nanochannels. On the other hand, nanopores/nanochannels can creat a microenvironment for study of spatially nanoconfined electrochemistry. The combination of nanofluidics and electrochemistry has given rise to many new theories and technologies for single molecule/particle analysis and nanofluid manipulation. Herein, we provide a review of the recent progresses …


Cysteine And Cystamine Co-Self-Assembled Monolayers For In Vivo Detection Of Ascorbic Acid, Yue Zhang, Tao-Tao Feng, Wen-Liang Ji, Mei-Ning Zhang Jun 2019

Cysteine And Cystamine Co-Self-Assembled Monolayers For In Vivo Detection Of Ascorbic Acid, Yue Zhang, Tao-Tao Feng, Wen-Liang Ji, Mei-Ning Zhang

Journal of Electrochemistry

Self-assembled monolayers (SAMs), which form highly ordered monolayers on the electrode surface through the gold-suffer bond, have attracted much attention in recent years. This stable layer not only can regulate the wettable properties of surface, but also can act as a promoter towards redox-active molecules. Here, we developed a simple and effective method to construct cysteine and cystamine co-self-assembled monolayer on gold microelectrode for in vivo detection of ascorbic acid (AA). The molar ratio at 1:1 of mixed monolayer has been found the optimum to enhance the electron-transfer kinetics of AA oxidation at low potential (ca. 0.10 V), meanwhile, it …


Current Statuses And Challenges Of Wearable, Flexible Electronic Sensors And Energy Storage Devices, Zhong-Qian Song, Fang-Jie Han, Hui-Jun Kong, Jia-Nan Xu, Yu Bao, Dong-Xue Han, Li Niu Jun 2019

Current Statuses And Challenges Of Wearable, Flexible Electronic Sensors And Energy Storage Devices, Zhong-Qian Song, Fang-Jie Han, Hui-Jun Kong, Jia-Nan Xu, Yu Bao, Dong-Xue Han, Li Niu

Journal of Electrochemistry

With the developments in the internet of things, artificial intelligence and human-computer interaction technology, soft, flexible and wearable electronic devices provide a novel platform for monitoring of the human vital signs, and recognition of human behaviors to connect human being and machine without consciousness. Recent progresses about wearable and flexible electronics that can provide accurate, non-invasive, long-term and continuous monitoring of human vital sings including pulse, temperature, skin activities, breathing and heart rate are summarized. The working mechanisms, current statuses and challenges in temperature sensor, strain sensor and pressure sensor are discussed. The review concludes with a prospect of current …


Study On The Relationship Between Structure Of Supramolecular Ion Material And Performance Of Humidity Sensing, Hui-Min Tang, Hai-Long Yan, Li Zhang, Jun-Jie Fei, Ping Yu, Lan-Qun Mao Jun 2019

Study On The Relationship Between Structure Of Supramolecular Ion Material And Performance Of Humidity Sensing, Hui-Min Tang, Hai-Long Yan, Li Zhang, Jun-Jie Fei, Ping Yu, Lan-Qun Mao

Journal of Electrochemistry

Humidity measurement and control is one of the most notable issues in various areas, such as climate, industry,
agriculture, electronics, especially human comfort and health. In our previous study, we have found that a new kind of supramolecular
ionic material (SIM), consisting of an imidazolium-based dication (e.g., 1,10-bis(3-methylimidazolium-1-yl) decane, C10(mim)2) and
electroactive dianionic (e.g., 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), ABTS), shows ultrasensitive and ultrafast
response towards humidity sensing. Herein we prepared six kinds of imidazolium-based dications with different carbon chain
lengths (i.e., C4, C6, C8, C10, C12, C …


A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long Jun 2019

A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long

Journal of Electrochemistry

Nanopore employs a single bio-molecule interface, which is a highly sensitive single-molecule detection technology for measuring single biomolecules such as DNA, RNA, protein, and peptide. The interaction between single molecule and nanopore is thermodynamically controlled. Therefore, it is urgent to precisely control the temperature of the nanopore system without introduction of any noise. In this paper, we have developed a low-noise temperature control system for single-molecule detection of nanopores to achieve precise regulation at the ambient temperature during measurements. The system utilizes the thermoelectric effect of the semiconductor refrigerating chip to heat or cool the detection chamber, while adopts electromagnetically …


Monolayer Triphosphates Mp3 (M = Sn, Ge) With Excellent Basal Catalytic Activity For Hydrogen Evolution Reaction, Hong-Hui Wu, He Huang, Jie Zhong, Song Yu, Qiaobao Zhang, Xiao Cheng Zeng Jun 2019

Monolayer Triphosphates Mp3 (M = Sn, Ge) With Excellent Basal Catalytic Activity For Hydrogen Evolution Reaction, Hong-Hui Wu, He Huang, Jie Zhong, Song Yu, Qiaobao Zhang, Xiao Cheng Zeng

Xiao Cheng Zeng Publications

Atomically thin two-dimensional (2D) materials have received intense research interest due to their novel properties and promising applications in nanodevices. By using density functional theory (DFT) calculations, we investigate catalytic activities of several newly predicted two-dimensional (2D) triphosphides GeP3, SnP3 and InP3 monolayers for hydrogen evolution reaction (HER). The calculation results show that GeP3 and SnP3 monolayers are active catalysts for HER with suitable free energy of hydrogen adsorption in the basal plane. In particular, the Gibbs free energy of hydrogen adsorption (ΔGH*) of GeP3 is 0.024 eV, a value even …


Preparation And Characterization Of Ruthenium-Gold Raman-Active Catalytic Surfaces, Thang Nguyen May 2019

Preparation And Characterization Of Ruthenium-Gold Raman-Active Catalytic Surfaces, Thang Nguyen

Student Scholar Symposium Abstracts and Posters

Heterogeneous reactions at the gas-solid interface play a major role in many important industrial and environmental processes. These reactions typically rely on metal surfaces, to act as a catalyst between gas phase reactants and products. The catalysts lower the transition state barrier in the formation of the products. The mechanisms of reactions on catalysts is often not fully known due to the difficulty of observing the bond breakage and formation between gaseous molecules at the interface. One method in which the catalytic mechanism can be studied is by using Raman Spectroscopy. However, one drawback of this method is the fact …


Neurological Disease Detection Using Surface Enhanced Spatially Offset Raman Spectroscopy (Sesors), Taylor D. Payne May 2019

Neurological Disease Detection Using Surface Enhanced Spatially Offset Raman Spectroscopy (Sesors), Taylor D. Payne

Chancellor’s Honors Program Projects

No abstract provided.


Advanced Electrochemical Strategy For In Vivo Detection Of Electrochemically Inactive Molecules, Zhou Qi, Zhang Li-Min, Tian Yang Apr 2019

Advanced Electrochemical Strategy For In Vivo Detection Of Electrochemically Inactive Molecules, Zhou Qi, Zhang Li-Min, Tian Yang

Journal of Electrochemistry

Development of efficient electrochemical strategies for in vivo analysis of electrochemically inactive molecules in brain is significant for understanding and studying their molecular mechanism and roles playing in brain and brain diseases. This review gives a brief introduction on the advanced in vivo electrochemical sensor for detection of non-redox active molecules from three aspects: 1) The selection and design of specific molecules are highly desirable to develop electrochemical sensors with high selectivity for measuring electrochemical inactive molecules through converting specific chemical reaction involved by target to electric signal; 2) The analysis based on ion current rectification occurred at spatial confined …


Recent Progress Of Electrochemiluminescence Sensors Based On Electrically Heated Electrode, Hui-Fang Zhang, Yi-Ting Chen, Fang Luo, Zhen-Yu Lin, Guo-Nan Chen Apr 2019

Recent Progress Of Electrochemiluminescence Sensors Based On Electrically Heated Electrode, Hui-Fang Zhang, Yi-Ting Chen, Fang Luo, Zhen-Yu Lin, Guo-Nan Chen

Journal of Electrochemistry

Electrochemiluminescence (ECL) has broad application in the fields of environmental monitoring and biological analysis due to its intrinsic advantages such as excellent versatility, good detection sensitivity, and high specificity. The intensity of ECL can be influenced by temperature variation in the ECL quantum efficiency and the rate of electrochemical reaction. However, traditional temperature control is commonly realized through bulk solutions heating, which is complicated and unfavorable for detection when the volatile and thermally unstable materials existed. In order to address these problems, electrically heated electrodes are used to adjust the temperature desired. The major character of this technique lies in …