Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Analytical Chemistry

Improving Thorium-230 Determination In Marine Sediment, Katherine Mateos Oct 2019

Improving Thorium-230 Determination In Marine Sediment, Katherine Mateos

Independent Study Project (ISP) Collection

Our oceans are intimately related to the climate of our planet. Paleoceanographic approaches aim to study oceans through geologic time to improve models of future climate. Radioisotopes provide us with chemical tracers that help us understand change through time. The uraniumseries decay chain contains thorium-230, a decay product of uranium-234. This isotope is useful to paleoceanographers in its disequilibrium to its parent isotope and in determining the flux of sediment falling to the ocean floor. In order to use 230Th to study oceans, we must be able to accurately measure the amount of thorium in sediment samples. Thorium is found …


Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman Sep 2019

Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The photochemistry of pyruvic acid (PA) in aqueous atmospheric particles contributes to the production of secondary organic aerosols. This work investigates the fate of ketyl and acetyl radicals produced during the photolysis (λ ≥ 305 nm) of 5-100 mM PA under steady state [O2(aq)] = 260 μM (1.0 ≤ pH ≤ 4.5) for photon fluxes between 1 and 10 suns. The radicals diffuse quickly into the water/air interface of microbubbles and react with dissolved O2 to produce singlet oxygen (1O2*). Furfuryl alcohol is used to trap and bracket the steady-state production of …


Monitoring Tropospheric Gases With Small Unmanned Aerial Systems (Suas) During The Second Cloudmap Flight Campaign, Travis J. Schuyler, Sean C. C. Bailey, Marcelo I. Guzman Aug 2019

Monitoring Tropospheric Gases With Small Unmanned Aerial Systems (Suas) During The Second Cloudmap Flight Campaign, Travis J. Schuyler, Sean C. C. Bailey, Marcelo I. Guzman

Chemistry Faculty Publications

Small unmanned aerial systems (sUAS) are a promising technology for atmospheric monitoring of trace atmospheric gases. While sUAS can be navigated to provide information with higher spatiotemporal resolution than tethered balloons, they can also bridge the gap between the regions of the atmospheric boundary layer (ABL) sampled by ground stations and manned aircraft. Additionally, sUAS can be effectively employed in the petroleum industry, e.g., to constrain leaking regions of hydrocarbons from long gasoducts. Herein, sUAS are demonstrated to be a valuable technology for studying the concentration of important trace tropospheric gases in the ABL. The successful detection and quantification of …


The Effects Of Reactant Concentration And Air Flow Rate In The Consumption Of Dissolved O2 During The Photochemistry Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman Mar 2019

The Effects Of Reactant Concentration And Air Flow Rate In The Consumption Of Dissolved O2 During The Photochemistry Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The sunlight photochemistry of the organic chromophore pyruvic acid (PA) in water generates ketyl and acetyl radicals that contribute to the production and processing of atmospheric aerosols. The photochemical mechanism is highly sensitive to dissolved oxygen content, [O2(aq)], among other environmental conditions. Thus, herein we investigate the photolysis (λ ≥ 305 nm) of 10–200 mM PA at pH 1.0 in water covering the relevant range 0 ≤ [O2(aq)] ≤ 1.3 mM. The rapid consumption of dissolved oxygen by the intermediate photolytic radicals is monitored in real time with a dissolved oxygen electrode. …


Molecular Characterization Of Free Tropospheric Organic Aerosol And The Development Of Computational Tools For Molecular Formula Assignment, Simeon Schum Jan 2019

Molecular Characterization Of Free Tropospheric Organic Aerosol And The Development Of Computational Tools For Molecular Formula Assignment, Simeon Schum

Dissertations, Master's Theses and Master's Reports

Organic aerosol affects human health and climate. These effects are largely determined by the composition of the organic aerosol, which is a complex mixture of species. Understanding the complexity of organic aerosol is critical to determining its effect on human health and climate. In this study, long range transported organic aerosol collected at the Pico Mountain Observatory was analyzed using ultrahigh resolution mass spectrometry. Organic aerosol transported in the free troposphere had an overall lower extent of oxidation than aerosol transported in the boundary layer. It was hypothesized that the lower oxidation was related to a more viscous phase state …


Extreme Molecular Diversity In Biomass Burning Atmospheric Organic Aerosol Observed Through Ultrahigh Resolution Mass Spectrometry, Matthew Brege Jan 2019

Extreme Molecular Diversity In Biomass Burning Atmospheric Organic Aerosol Observed Through Ultrahigh Resolution Mass Spectrometry, Matthew Brege

Dissertations, Master's Theses and Master's Reports

Ambient atmospheric aerosol is ubiquitous in the atmosphere, originating from a variety of natural and man-made sources. These microscopic particles have profound impacts on the global climate system as well as human health. The organic fraction of atmospheric aerosol is an extremely complex mixture which is not yet fully characterized. These unknown organic aerosol species contribute to the uncertainty in the effect of aerosol on climate and uncertainty in overall ambient aerosol toxicity. Light absorbing organic aerosol can interact with incoming solar radiation and contribute to atmospheric heating; however, the source apportionment and overall fate of these absorbing organic aerosol …