Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Analytical Chemistry

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong Dec 2019

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong

Journal of Electrochemistry

P-nitrothiophenol (PNTP) is one of the most common probe molecules studied by surface-enhanced Raman spectroscopy (SERS). The research in electrochemical reduction behavior of PNTP will help understanding the mechanism for the nitrobenzene reduction. In this paper, we used transient electrochemical surface-enhanced Raman spectroscopy (TEC-SERS) to study the SERS of PNTP with cyclic voltammetry and chronoamperometry on gold electrodes. The results show that the TEC-SERS provide a time resolution that equals the transient electrochemical methods, and we concluded that the reaction was so quick that we did not observe the spectral information of intermediate species described in the literatures with a …


Electrochemical Sensor Based On Magnetic Electrode Modified With Magnetic Molecularly Imprinted Nanoparticles Immobilized Hemoglobin For Determination Of Hydrogen Peroxide, Yang Yuan, Jia-Xin Wang, Yu-Hua Cao Dec 2019

Electrochemical Sensor Based On Magnetic Electrode Modified With Magnetic Molecularly Imprinted Nanoparticles Immobilized Hemoglobin For Determination Of Hydrogen Peroxide, Yang Yuan, Jia-Xin Wang, Yu-Hua Cao

Journal of Electrochemistry

In this work, the surface-imprinted technique was used to prepare magnetic hemoglobin (Hb) imprinted nanoparticles, using Fe3O4@SiO2 NPs as the carrier, Hb as the template molecule, and tetraethyl orthosilicate (TEOS) as the imprinted polymer monomer. The nanoparticles had a core-shell structure, with magnetic Fe3O4 NPs as the core and Hb imprinted polymers as the shell. Therefore, Hb could be concentrated and fixed on the surface of the magnetic imprinted nanoparticles (MMIPs NPs). Furthermore, MMIPs NPs were immobilized with chitosan (CS) on the surface of a magnetic electrode to constitute Hb enzyme-like biosensor …


The Effects Of Temperature On The Yields Of Aliphatic And Aromatic Products From The Supercritical Pyrolysis Of 1-Octene, Elizabeth Anne Hurst Nov 2019

The Effects Of Temperature On The Yields Of Aliphatic And Aromatic Products From The Supercritical Pyrolysis Of 1-Octene, Elizabeth Anne Hurst

LSU Doctoral Dissertations

Prior to their combustion, fuels for future high-speed aircraft are expected to experience supercritical conditions, leading to the production of polycyclic aromatic hydrocarbons (PAH), precursors to solid carbonaceous deposits, via pyrolytic reactions. These solid deposits can clog fuel-transfer lines, causing unsafe aircraft operation. To prevent the formation of fuel-line deposits, it is critical to understand the reaction pathways that lead to PAH formation in the supercritical fuel pyrolysis environment.

To better understand the role of large 1-alkenes in PAH formation, supercritical pyrolysis experiments with model fuel 1-octene, a representative 1-alkene product from supercritical n-alkane pyrolysis, have been performed. The …


Multidimensional Mass Spectrometry Of Chemonic™ Ccg-6 Nonionic Surfactant With Separation By Polarity And Shape, Charles Johnson Jan 2019

Multidimensional Mass Spectrometry Of Chemonic™ Ccg-6 Nonionic Surfactant With Separation By Polarity And Shape, Charles Johnson

Williams Honors College, Honors Research Projects

Chemonic™ CCG-6 surfactant is a water-soluble poly(ethylene glycol) (PEG) conjugated alkyl glyceride emollient. This surfactant exists as a complex mixture of a glycerol cores conjugated with poly(ethylene glycol) branches (PEGylation) that were partially esterified with caprylic (C8) and capric (C10) acids. These may be esterified on one, two, or all three arms of the glyceride. The architecture of the structures in this mixture was studied using multidimensional mass spectrometry (MS). Mass spectrometry was interfaced with ultra-performance liquid chromatography (UPLC) and ion mobility (IM) separation. The mixture was separated by reversed-phase LC, oligomers of the star-branched polymer were separated according to …