Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Physical Chemistry

2020

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 201

Full-Text Articles in Chemistry

Synergistic Effect Of Dissolving O2 And Wavelength On The Photo-Assisted Anodic Deposition Of Ceo2 Thin Films, Tong-Zheng Jin, Yu-Meng Yang, Sheng-Hui Fan, Guo-Ying Wei, Zhao Zhang Dec 2020

Synergistic Effect Of Dissolving O2 And Wavelength On The Photo-Assisted Anodic Deposition Of Ceo2 Thin Films, Tong-Zheng Jin, Yu-Meng Yang, Sheng-Hui Fan, Guo-Ying Wei, Zhao Zhang

Journal of Electrochemistry

Cerium dioxide (CeO2) thin films have been applied as new material in many technical fields such as solid oxide fuel cells, catalysts, UV absorbents, pharmacology, and coatings for corrosion protection of many metals and alloys. Electrodeposition is widely considered to be one of the best preparation methods for CeO2 film. In this work, the CeO2 films were prepared by photo-assisted anodic deposition in the bath solutions containing 0.05 mol·L-1 cerium (III) nitrate, 0.1 mol·L-1 ammonia acetate and 70% (V/V) ethanol onto 316L stainless steel (SS) surface. The synergistic effects of three monochromatic …


Step-By-Step Modification Of Graphite Felt Electrode For Vanadium Redox Flow Battery, Jing-Yuan Lou, Dong-Jiang You, Xue-Jing Li Dec 2020

Step-By-Step Modification Of Graphite Felt Electrode For Vanadium Redox Flow Battery, Jing-Yuan Lou, Dong-Jiang You, Xue-Jing Li

Journal of Electrochemistry

As a well-known electrode material of the vanadium redox flow battery (VRFB),graphite felt electrode is the frequently-used electrode material in VRFB, and its low electrochemical activity is one of the key factors for the low power density of VRFB. In this work, we proposed a step-by-step modification method, which used KMnO4 to oxidize graphite felt first and then placed in an activation solution to excite its reactivity, to improve the electrochemical performance of the graphite felt electrode. According to the results from cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) characterizations …


Novel Electrochemical Sensor Based On Integration Of Nanoporous Gold With Molecularly Imprinted Polymer For Detection Of Arsenic Ion(Iii), Wu-Wei Ma, Qi-Gang Chang, Xiong-Fang Shi, Yan-Bin Tong, Li Zhou, Bang-Ce Ye, Jian-Jiang Lu, Jin-Hu Zhao Dec 2020

Novel Electrochemical Sensor Based On Integration Of Nanoporous Gold With Molecularly Imprinted Polymer For Detection Of Arsenic Ion(Iii), Wu-Wei Ma, Qi-Gang Chang, Xiong-Fang Shi, Yan-Bin Tong, Li Zhou, Bang-Ce Ye, Jian-Jiang Lu, Jin-Hu Zhao

Journal of Electrochemistry

Arsenic, a toxic chemical element, is detrimental to environment and human health in particular. Therefore, the development of simple, fast, and accurate arsenic ion (As3+) detection methods has attracted extensive attention. In this work, an electrochemical sensor based on molecular imprinted polymer (MIP) and nano-porous gold (NPG) modified indium tin oxide (ITO) electrode (MIP/NPG/ITO) was developed for determination of As3+ in water with different quality. NPG with high conductivity, large specific surface area and high biocompatibility was prepared in situ on ITO surface by a green electrodeposition method using simple and controllable steps. Then, a layer of MIP was synthesized …


Degradation And Thermal Characteristics Of Lini0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery After Different State Of Charge Ranges Cycling, Cun Wang, Wei-Jiang Zhang, Teng-Fei He, Bo Lei, You-Jie Shi, Yao-Dong Zheng, Wei-Lin Luo, Fang-Ming Jiang Dec 2020

Degradation And Thermal Characteristics Of Lini0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery After Different State Of Charge Ranges Cycling, Cun Wang, Wei-Jiang Zhang, Teng-Fei He, Bo Lei, You-Jie Shi, Yao-Dong Zheng, Wei-Lin Luo, Fang-Ming Jiang

Journal of Electrochemistry

The LiNi0.8Co0.15Al0.05O2 (NCA) cathode exhibits high energy density and large reversible capacity, which plays an essential role in the field of electric vehicles (EVs). However, low capacity retention and poor thermal stability limit its application. Few literatures are found for the capacity degradation mechanism of NCA/graphite batteries at home and abroad. The different state of charge (SOC) ranges cycle degradation behaviors of 18650-type NCA/graphite (2.4 Ah) battery were studied in this paper. The SOC ranges considered were 0% ~ 20% (low), 20% ~ 70% (medium), 70% ~ 100% (high), and 0% ~ 100% …


Effect Of Reaction Conditions On Cu⁃Catalyzed Co2 Electroreduction, Chang Zhu, Wei Chen, Yan-Fang Song, Xiao Dong, Gui-Hua Li, Wei Wei, Yu-Han Sun Dec 2020

Effect Of Reaction Conditions On Cu⁃Catalyzed Co2 Electroreduction, Chang Zhu, Wei Chen, Yan-Fang Song, Xiao Dong, Gui-Hua Li, Wei Wei, Yu-Han Sun

Journal of Electrochemistry

Electrochemical conversion of carbon dioxide (CO2) driven by renewable electricity that can meet both carbon emission reduction and renewable energy utilization has been rapidly developed in recent years. Copper (Cu) catalyst has long been a promising candidate for CO2 electroreduction applications because of its natural abundance and specific capability of producing a substantial amount of C2 products. However, various metallic Cu electrodes reported have been significantly influenced by the adsorption of certain cation/anion ions, resulting in wide-span catalytic activities and selectivity for various products. In addition, a recent report demonstrated that by virtue of gas-diffusion flow cell …


Preparation And Process Optimization Of Cathode Materials For Lithium-Sulfur Batteries, Kai Wu Dec 2020

Preparation And Process Optimization Of Cathode Materials For Lithium-Sulfur Batteries, Kai Wu

Journal of Electrochemistry

Lithium-sulfur (Li-S) batteries represent promising candidates for next-generation energy storage system due to their high energy density and low material cost. However, the industrial application of Li-S batteries remains challenges because of the shuttle effect from lithium polysulfides and the lack of facial routes for Li-S battery preparation. To solve these problems, a cathode consisting of different commercial carbon materials, namely, acetylene black (SP), Ketjen Black (KB) and carbon nanotube (CNT), with sulfur (S) is prepared separately for Li-S battery. After the process of 8-h ball milling for KB/S composite, together with the polyvinyl pyrrolidone (PVP) binder, the cathode could …


Effect Of 18-Crown-6 Additive On Chromium Electrodeposition In Ionic Liquid, Yi-Jie Wang, Dong-Fang Niu, Xin-Sheng Zhang Dec 2020

Effect Of 18-Crown-6 Additive On Chromium Electrodeposition In Ionic Liquid, Yi-Jie Wang, Dong-Fang Niu, Xin-Sheng Zhang

Journal of Electrochemistry

Trivalent chromium ion (Cr3+) is used for electrodeposition due to its low toxicity. Electrodeposition in ionic liquids can greatly solve for hydrogen evolution problem. However,as a widely used Cr(III) precursor, chromium chloride hydrate (CrCl3·6H2O), still contains water. In the presence of water, Cr3+ will form a complex coordination structure with water molecules ([Cr(H2O)6]3+), which is a stable octahedral structure and is difficult to be directly reduced to chromium metal. Therefore, coordination agents should be added into the bath. In this work, the effect of 18-Crown-6 additive on chromium electrodeposition was investigated in …


Electrochemical Determination Of Dopamine Based On Metal-Substituted Polyoxometalates Composites, Yi-Fei Xing, Na Li, Xiao-Fang Wen, Hong-Yan Han, Min Cui, Cong Zhang, Ju-Jie Ren, Xue-Ping Ji Dec 2020

Electrochemical Determination Of Dopamine Based On Metal-Substituted Polyoxometalates Composites, Yi-Fei Xing, Na Li, Xiao-Fang Wen, Hong-Yan Han, Min Cui, Cong Zhang, Ju-Jie Ren, Xue-Ping Ji

Journal of Electrochemistry

In this report, a dopamine electrochemical sensor based on metal-substituted polyoxometalates and reduced graphene oxide (RGO) composite was successfully constructed. The K2H2SiW11NiO39·xH2O (SiW11Ni) was synthesized by hydrothermal method, while the RGO was prepared by Hummers' method and chemical reduction method. The above-mentioned materials were characterized by SEM, FTIR and XRD. The as-synthesized SiW11Ni and RGO composites were modified on the surface of glassy carbon electrode (GCE) by drop coating method, and the sensing interface (SiW11Ni-RGO/GCE) was successfully constructed. The electrochemical properties of …


Preparations And Sodium Storage Properties Of Ni3S2@Cnt Composite, Ming-Tao Duan, Yan-Shuang Meng, Hong-Shuai Zhang Dec 2020

Preparations And Sodium Storage Properties Of Ni3S2@Cnt Composite, Ming-Tao Duan, Yan-Shuang Meng, Hong-Shuai Zhang

Journal of Electrochemistry

Transition metal sulfides (TMSs)-based electrode materials with highly reversible sodium storage have attracted extensive attentions as one of the most prospective electrode materials for sodium ion batteries (SIBs). However, low cycling stability and rate property caused by large volume expansion and poor electronic conductivity during the electrochemical reaction still hamper their further practical application. In this work, in-situ encapsulated Ni3S2 nanoparticles in carbon nanotubes (Ni3S2@CNT) have been successfully fabricated as an anode material for high-performance SIBs by a one-step solid-phase calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), …


Effect Of Stereotaxically-Constructed Graphene On The Negative Electrode Performance Of Lead-Acid Batteries, Pin-Song Chen, Yi-Tao Hu, Xin-Yi Zhang, Pei-Kang Shen Dec 2020

Effect Of Stereotaxically-Constructed Graphene On The Negative Electrode Performance Of Lead-Acid Batteries, Pin-Song Chen, Yi-Tao Hu, Xin-Yi Zhang, Pei-Kang Shen

Journal of Electrochemistry

With the advantages of high ratio surface area, excellent conductivity and high stability, the stereotaxically-constructed graphene (SCG) material was added to the negative active material (NAM) of lead-acid battery for improving battery performance. XRD, SEM and cyclic voltammetry tests were carried out to analyze the influence of SCG on negative active material. It is found that the conversion efficiency of lead sulfate to lead in the negative active material added with SCG material was higher than that of control group, and the particle size of the lead sulfate obtained after the discharge reaction was smaller, which are favorable factors for …


Core-Shell Structured Ru@Ptru Nanoflower Electrocatalysts Toward Alkaline Hydrogen Evolution Reaction, Xue-Liang Wang, Yuan-Yuan Cong, Chen-Xi Qiu, Sheng-Jie Wang, Jia-Qi Qin, Yu-Jiang Song Dec 2020

Core-Shell Structured Ru@Ptru Nanoflower Electrocatalysts Toward Alkaline Hydrogen Evolution Reaction, Xue-Liang Wang, Yuan-Yuan Cong, Chen-Xi Qiu, Sheng-Jie Wang, Jia-Qi Qin, Yu-Jiang Song

Journal of Electrochemistry

Water electrolysis for hydrogen production is beneficial for solving the problem of energy crisis and environmental issues. It is necessary to study highly active and cost-effective catalysts toward hydrogen evolution reaction (HER) to reduce the consumption of noble metals. Herein, we report the synthesis of core-shell structured Ru@Pt0.24Ru nanoflowers electrocatalyst by stepwise reduction of Ru and Pt precursors in the mixture of oleylamine and benzyl alcohol at 160 oC. The average diameter of the resultant Ru@Pt0.24Ru was 16.5±4.0 nm with a bulk atomic ratio between Pt and Ru of 0.24:1 and a surface ratio of 3.3:1 …


Preparations And Photoelectrochemical Performances Of Rgo-Tio2 Nanotubes Arrays, Ze-Yang Zhang, Lan Sun, Chang-Jian Lin Dec 2020

Preparations And Photoelectrochemical Performances Of Rgo-Tio2 Nanotubes Arrays, Ze-Yang Zhang, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Decorating TiO2 nanotube arrays with RGO to improve the photocatalytic activity of TiO2 nanotube arrays has been reported. For the reported RGO-TiO2 nanotube arrays, TiO2 nanotube arrays were prepared by anodizing the high-purity Ti foil in an organic electrolyte for multiple-step treatments, while RGO were deposited on TiO2 nanotube arrays by using cyclic voltammetry or other electrical reduction methods. To enhance the reduction degree and the coverage of RGO on the resultant RGO-TiO2 nanotube arrays, in this work, the one-step electrochemical anodization in hydrofluoric acid was used to fabricate TiO2 nanotube arrays with …


Numerical Simulations Of Current And Temperature Distribution Of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based On The Theory Of Electric-Chemical-Thermal Coupling, Cheng-Rong Yu, Jian-Guo Zhu, Cong-Ying Jiang, Yu-Chen Gu, Ye-Xin Zhou, Zhuo-Bin Li, Rong-Min Wu, Zheng Zhong, Wan-Bing Guan Dec 2020

Numerical Simulations Of Current And Temperature Distribution Of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based On The Theory Of Electric-Chemical-Thermal Coupling, Cheng-Rong Yu, Jian-Guo Zhu, Cong-Ying Jiang, Yu-Chen Gu, Ye-Xin Zhou, Zhuo-Bin Li, Rong-Min Wu, Zheng Zhong, Wan-Bing Guan

Journal of Electrochemistry

Solid oxide fuel cell (SOFC) is a high-efficient clean conversion device for future energy management. Because of the low antioxidant reduction ability and complex thermal stress, the structure of traditional asymmetrical thin anode-supported planar SOFC is easily to be broken under stack operating conditions. To overcome these defects, a new complete symmetrical SOFC based on double-sided cathodes was developed. To study the influences of gas flow direction and current collection mode on the cell performance inside stack, a numerical model was established by finite element method based on the theory of electro-thermo-chemo multiphysical coupling. By applying this model, the molar …


Preparations And Properties Of Low Cost Sulfide Solid Electrolytes Li6-XPs5-XClX, Na-Chuan Yang, Yu Wang, Yi Shuai, Kang-Hua Chen Dec 2020

Preparations And Properties Of Low Cost Sulfide Solid Electrolytes Li6-XPs5-XClX, Na-Chuan Yang, Yu Wang, Yi Shuai, Kang-Hua Chen

Journal of Electrochemistry

With the shortage of energy and environmental pollution, the storage of electric energy is getting more attention all over the world. In order to improve the energy density and safety performance of batteries, uses of solid electrolyte become more and more popular. However, because the conductivity of solid electrolyte is not comparable to that of liquid electrolyte, the solid electrolyte application has certain limitations. With the efforts of researchers from various countries, there are several different solid electrolytes having better conductivity, for instance, sulfide solid electrolyte and oxide solid electrolyte. Sulfide solid electrolyte is a highly promising solid electrolyte material …


Pitting Behaviors Of Passivated And Trans-Passivated 304 Stainless Steel, Jing Shen, Zi-Ming Wang, Da-Jiang Zheng, Guang-Ling Song Dec 2020

Pitting Behaviors Of Passivated And Trans-Passivated 304 Stainless Steel, Jing Shen, Zi-Ming Wang, Da-Jiang Zheng, Guang-Ling Song

Journal of Electrochemistry

In order to further understand the passivation and trans-passivation behaviors of 304 stainless steels, the samples were pretreated under different polarization potentials and their corrosion behaviors were investigated. It was found that the pitting potential of the untreated sample was the same as that of the sample treated with 1.1 V trans-passivation potential, while the pitting potential of the sample treated with 0.5 V passivation treatment was the highest. This observation was further verified by the SKP results. According to SEM observations, the surface of the untreated sample preserved a polishing morphology, while the surface of the 0.5 V passivation …


Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney Dec 2020

Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney

Doctoral Dissertations

A material is considered soft when its bulk modulus is significantly greater than its shear modulus. Rubbery polymers are a class of soft materials where resistance to extension is mainly entropic in nature. Polymeric soft solids differ from liquids due to the presence of a percolated network of strong bonds that resist deformation and flow on a given time scale. The incompressible nature, entropically driven elasticity, and molecular scale network structure of soft polymeric solids combine to impart unique mechanical behavior that often results in complex material responses to simple loading situations. An important example of this is cavitation in …


Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt Dec 2020

Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt

University of New Orleans Theses and Dissertations

Molecular Dynamics simulations are a highly useful tool in helping understand the fundamental interactions present in a variety of chemical systems. The work discussed here illustrates it’s use in determining the conformational dynamics of the Zika and SARS-Cov-2 helicase in a physiological environment, largely in an effort to discover inhibitors capable of rendering the protein inert. Additionally, we show how it can be used to understand paradoxical trends in the anion-induced precipitation of Cucurbituril cavitands.

Viral helicases are motor proteins tasked with unwinding the viral dsRNA, a crucial step in preparing the strand to be translatable by host cells. By …


Hemithioindigo-Based Photoswitchable Self- Complementary Hydrogen Bond Arrays, Suendues Noori Dec 2020

Hemithioindigo-Based Photoswitchable Self- Complementary Hydrogen Bond Arrays, Suendues Noori

Electronic Thesis and Dissertation Repository

Hydrogen bonded materials are slowly conquering grounds in the literature because of their dynamic features which stem from their reversible interactions. Incorporating the ability for light to chemically modify these interactions provides a unique template for innovative, efficient and self-healing materials. This thesis explores the design, synthesis, and characterization of nine derivatives of a well-known organic compound – hemithioindigo – with dual function; as a photoswitch and a novel self-complementary hydrogen bond array. The supramolecular complexes formed moderate to strong associations (63 M-1 to 1100 M-1) with spontaneous Gibbs free energy values (-10.3 kJ/mol to -17.3 kJ/mol) …


Electrochemiluminescence Of A Di-Boron Complex, Perovskite And Carbon Quantum Dots, Jonathan M. Wong Dec 2020

Electrochemiluminescence Of A Di-Boron Complex, Perovskite And Carbon Quantum Dots, Jonathan M. Wong

Electronic Thesis and Dissertation Repository

The electrochemiluminescence (ECL) of three novel materials was explored in this thesis. A di-boron complex exhibiting crystallization-induced blue shift emission was detected utilizing photoluminescence. This phenomenon was successfully observed in the annihilation pathway, resulting in crystallization-induced blue shift ECL. The effects of coreactant and crystallization-induced enhancements were distinguished utilizing two testing systems. Undoped and Mn-doped CsPbCl3 perovskites were investigated, as the latter exhibits a dual emissive photoluminescence pathway due to host and dopant emission mechanics. It was discovered that the electrochemiluminescence of Mn-doped CsPbCl3 proceeds through a triplet-triplet annihilation pathway. Furthermore, the relaxation of the electrochemically generated Mn-doped …


Fabricating Cu2znsns4, Cu2znsn(S,Se)4 And Cuin(S,Se)2 Light-Absorbing Thin Films For Low-Cost Solar Devices., Vaishnavi Raja Dec 2020

Fabricating Cu2znsns4, Cu2znsn(S,Se)4 And Cuin(S,Se)2 Light-Absorbing Thin Films For Low-Cost Solar Devices., Vaishnavi Raja

Electronic Thesis and Dissertation Repository

In this thesis, Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe) and CuIn(S,Se)2 (CISSe) thin-films have been optimized to use as the key light-absorbing and conversion layer for solar cells. CZTS nanocrystals (NCs) were solvothermally synthesized, etched with acetic acid and structurally analyzed using synchrotron spectroscopy. Electrodeposited CZTSSe films showed a non-ideal increase in sulfur with lower selenization temperature and post-process etching. Compositional studies of electrodeposited CISSe films confirmed the decrease in selenium after the acetic acid etching. Through PECMs and other conventional characterization techniques, it was determined that non-etched CZTSSe and CISSe solar devices performed better …


Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning Dec 2020

Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning

Chemistry and Chemical Biology ETDs

Converting alkanes to other, more chemically and economically valuable molecules requires catalysts that can survive elevated temperatures and highly reducing environments. These environments can cause many metal-nanoparticle based catalysts to sinter rapidly, causing a loss of activity. They must also tolerate the coke formation, as well, since coke can restrict access to active sites by gas phase molecules, thus lowering catalytic activity. While there are routes to improve both the sinter and coke resistance of catalysts, an alternative strategy is to develop a protocol for regenerating the activity of the catalyst in question when coke formation or sintering becomes problematic. …


Developments Of Machine Learning Potentials For Atomistic Simulations, Howard Yanxon Dec 2020

Developments Of Machine Learning Potentials For Atomistic Simulations, Howard Yanxon

UNLV Theses, Dissertations, Professional Papers, and Capstones

Atomistic modeling methods such as molecular dynamics play important roles in investigating time-dependent physical and chemical processes at the microscopic level. In the simulations, energy and forces, sometimes including stress tensor, need to be recalculated iteratively as the atomic configuration evolves. Consequently, atomistic simulations crucially depend on the accuracy of the underlying potential energy surface. Modern quantum mechanical modeling based on density functional theory can consistently generate an accurate description of the potential energy surface. In most cases, molecular dynamics simulations based on density functional theory suffer from highly demanding computational costs. On the other hand, atomistic simulations based on …


Unifying Chemistry And Machine Learning For The Study Of Noncovalent Interactions, Jacob A. Townsend Dec 2020

Unifying Chemistry And Machine Learning For The Study Of Noncovalent Interactions, Jacob A. Townsend

Doctoral Dissertations

Gas separations are in great demand for carbon emission reduction, natural gas purification, oxygen isolation, and much more. Many of these separations rely on cost-prohibitive methods such as cryogenic distillation or strong-binding solvents. As a result, novel materials are being developed to subvert the energetic expense of gas separation processes. These studies focus on improving the performance of alternative materials, including (but not limited to) metal-organic frameworks, covalent organic frameworks, dense polymeric membranes, porous polymers, and ionic liquids.

In this work, the atomistic effects of functional units are explored for gas separations processes using electronic structure theory and machine learning. …


Predicting The Hydration Free Energy Of Small Alkanes And Alcohols From Custom, Electronic Structure-Based Force Fields, T. Ryan Rogers Dec 2020

Predicting The Hydration Free Energy Of Small Alkanes And Alcohols From Custom, Electronic Structure-Based Force Fields, T. Ryan Rogers

Graduate Theses and Dissertations

Mathematical theories reveal the fundamental physics involved in experimentalphenomena. Computer models of such theories are routinely used to corroborate or explain experiments and predict properties of chemical systems. Therefore, an important effort in computational chemistry is the development of more accurate and efficient chemical models. Current-generation models are only beginning to approach experimental-quality predictions of hydration free energies (HFEs).Using computations of quantum mechanical (QM) forces and classical simulations based on these forces, I investigate models to predict several properties of solutes and solutions. This dissertation is a collection of projects exemplifying methods used to gain insight into chemical systems.

Simulations …


Unspecified Verticality Of Franck-Condon Transitions, Absorption And Emission Spectra Of Cyanine Dyes, And A Classically Inspired Approximation, Joseph D. Alia, Joseph A. Flack Nov 2020

Unspecified Verticality Of Franck-Condon Transitions, Absorption And Emission Spectra Of Cyanine Dyes, And A Classically Inspired Approximation, Joseph D. Alia, Joseph A. Flack

Chemistry Publications

The computed vertical energy, Ev,a/f, from the equilibrium geometry of the initial electronic state is frequently considered as representative of the experimental excitation/emission energy, Eabs/fl = hc/λmax. Application of the quantum mechanical version of the Franck–Condon principle does not involve precise specification of nuclear positions before, after, or during an electronic transition. Moreover, the duration of an electronic transition is not experimentally accessible in spectra with resolved vibrational structure. It is shown that computed vibronic spectra based on TDDFT methods and application of quantum mechanical FC analysis predict Eabs = hc/λmax …


Structure And Dynamics Of Phospholipid Vesicles And The Dependence On Nanoscale Interactions With Molecules Of Varying Complexity, Lakshapathy Widanelage Judith Upeka De Mel Nov 2020

Structure And Dynamics Of Phospholipid Vesicles And The Dependence On Nanoscale Interactions With Molecules Of Varying Complexity, Lakshapathy Widanelage Judith Upeka De Mel

LSU Doctoral Dissertations

In this dissertation, molecular interactions and changes imposed by nano-scale structures on phospholipid vesicles were investigated. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) large unilamellar vesicles (LUVs) were used as the model system. Understanding changes of the bilayer structure, interfacial properties, lipid dynamics, and self-assembly, allows bridging relationships between biological cell membrane structure and dynamics to cellular functionalities. For example, membrane curvature changes are linked to membrane protein functions, although the exact mechanisms of control are not yet understood. Moreover, the knowledge gained from vesicle models allows exploring novel strategies for drug delivery applications. To achieve this, DOPC LUVs were synthesized and characterized by a …


Computational Investigations Of Battery Electrolytes, Ke Li Nov 2020

Computational Investigations Of Battery Electrolytes, Ke Li

LSU Doctoral Dissertations

In this dissertation, the structure and dynamics of battery electrolytes were investigated using atomistic molecular dynamics (MD) simulations. Battery electrolytes play a key role in transporting ions between the cathode and anode. The chemical stability and ionic conductivity of electrolytes influence battery performance. In order to design better electrolytes, one needs an understanding of the relationship between electrolyte structure, dynamics, and bulk properties. To bridge the gap between the macroscopic phenomenon and the hidden molecular physics, in the first project we focused on probing an ether-based electrolyte, chosen for its relevance in sodium-based batteries. Through studying the impact of concentration …


Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …


Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu Nov 2020

Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu

FIU Electronic Theses and Dissertations

Surface Enhanced Raman Spectroscopy (SERS) is an analytical technique in which nanostructured substrates amplify the inherently weak Raman signal of an adsorbed species by several orders of magnitude, enabling the detection of trace compounds, up to the single molecule level. While this may be an exceptional tool for any analytical scientist, SERS is at present relegated to the role of academic sensation, and is underutilized in everyday analytical practice. The SERS community is increasingly attributing this setback to a poor understanding of nanoscale surfaces and their chemical environment; since molecular adsorption at the nanostructured surface enables SERS detection, uncertainty about …