Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Physical Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 4560

Full-Text Articles in Chemistry

Tribocorrosion And Metal Release From Austenitic Stainless Steels 304 And 201 In Simulated Cassava Food Contact, Robert Addai, Temitope E. Olowoyo, Thalia E. Standish, Jeffrey Daniel Henderson, Ubong Eduok, Yolanda Hedberg Jul 2024

Tribocorrosion And Metal Release From Austenitic Stainless Steels 304 And 201 In Simulated Cassava Food Contact, Robert Addai, Temitope E. Olowoyo, Thalia E. Standish, Jeffrey Daniel Henderson, Ubong Eduok, Yolanda Hedberg

Chemistry Publications

Cassava is the third most significant calorie source in the tropics. Its processing has changed from traditional methods to stainless steel processing machines. This study investigated the influence of cassava on metal release from two common stainless steels, ASTM 304 and 201, with and without friction, and on tribocorrosion (multianalytically) of 304. Cassava was relatively corrosive and hindered repassivation of the surface oxide of stainless steel, but it also acted as a lubricant against mechanical friction. The combined action of friction and cassava caused a significant increase in iron, chromium, nickel, and manganese release from the stainless steels (30–35- fold …


Development Of An Enhanced Sampling Workflow To Accelerate Molecular Docking With Sparse Biophysical Information, Zachary Stichter May 2024

Development Of An Enhanced Sampling Workflow To Accelerate Molecular Docking With Sparse Biophysical Information, Zachary Stichter

Masters Theses & Specialist Projects

Rapid docking of flexible biological macromolecules remains a significant open challenge in protein structure determination. While rigid docking is relatively simple with toolkits such as TagDock, a key obstacle to rapid flexible docking is the complexity and roughness of the free energy surface associated with protein conformational motion (often termed the many-minima problem), meaning conventional molecular dynamics methods do not effectively sample protein conformations near the interaction complex in accessible timescales. Methods such as metadynamics and replica exchange molecular dynamics exist to ameliorate this obstacle, yet these methods use nonphysical biases or random swaps to enhance sampling. In contrast, high …


Electrochemical Syntheses Of Aryl-Substituted Benzothiophenes And Phenanthrenes Using Benzenediazonium Salts As The Aryl Radical Precursors, Li-Yuan Lan, Yang-Ye Jiang, Raymond Daniel Little, Cheng-Chu Zeng Apr 2024

Electrochemical Syntheses Of Aryl-Substituted Benzothiophenes And Phenanthrenes Using Benzenediazonium Salts As The Aryl Radical Precursors, Li-Yuan Lan, Yang-Ye Jiang, Raymond Daniel Little, Cheng-Chu Zeng

Journal of Electrochemistry

Aryl-substituted benzothiophene and phenanthrene are important structural units in medicinal chemistry and materials science. Although extensive effort has been devoted to prepare these compounds and a variety of approaches have been developed to construct the 2-substituted benzothiophene core structure, environmental-friendly and efficient synthetic means are still desired. Based on our previous electrochemical Minisci-type arylation reaction with aryl diazonium salt as the aryl precursor, as well as the work from König’s group, herein, we described the use of paired electrolysis to achieve 2-aryl benzothiophenes and 9-aryl phenanthrenes employing benzenediazonium salts as the aryl radical precursors. Initially, 2-methylthiobenzendiazonium salt 1a and 4-methylbenzene …


Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu Apr 2024

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu

Journal of Electrochemistry

Zero-emission of desulfurization wastewater is one of the main demands for coal-fired power plants. As typical high salinity wastewater, it is hard to purify the desulfurization wastewater from coal-fired power plants through traditional physicochemical treatment or biochemical treatment, e.g., COD and Cl. A high concentration of Cl ion in desulfurization wastewater restricts wastewater reuse and zero-emission. Electrochemical technology is an attractive method for high salinity wastewater zero-emission, which provides a versatile, efficient, cost-effective, easily automatable, and clean industrial process. For advanced treatment of effluent after triple box process treatment in power plants, this paper reports an electrochemical …


Electrocatalytic Cyclopropanation Of Active Methylene Compounds, Liang-Hua Jie, Hai-Chao Xu Apr 2024

Electrocatalytic Cyclopropanation Of Active Methylene Compounds, Liang-Hua Jie, Hai-Chao Xu

Journal of Electrochemistry

The development of novel strategies to access cyclopropanes has become increasingly important due to the vital role of these three-membered ring structures in synthetic intermediates, natural products, and pharmaceuticals. Herein, we present an electrocatalytic method for the synthesis of cyclopropanes through intermolecular dehydrogenative annulation of active methylene compounds and arylalkenes. This electrochemical process requires no chemical oxidants, allowing for a speedy access to various functionalized cyclopropanes from inexpensive and readily available materials.


The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao Mar 2024

The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao

Journal of Electrochemistry

Alkaline polymer electrolyte (APE) is the core component of modern alkaline hydrogen and oxygen fuel cells, and its single ion conductor nature makes the "electrode/APE" interfaces different from the conventional "electrode/solution" interfaces in terms of ion distribution, electrical double layer structure and polarization behavior. Due to the complexity of the APE and the associated solid-solid interfaces, fundamental investigations are challenging and deeper understanding of the structures and properties of such interfaces is in the infant stage. In this work, we aim to investigate the double layer structure from the aspects of differential capacitance curve and potential of zero charge (PZC) …


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin Mar 2024

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan Mar 2024

Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan

Journal of Electrochemistry

As a promising 2D material, graphene exhibits excellent physical properties including single-atom-scale thickness and remarkably high charge carrier mobility. However, its semi-metallic nature with a zero bandgap poses challenges for its application in high-performance field-effect transistors (FETs). In order to overcome these limitations, various approaches have been explored to modulate graphene's bandgap, including nanoscale confinement, external field induction, doping, and chemical micropatterning. Nevertheless, the stability and controllability still need to be improved. In this study, we propose a feasible method that combines electrochemical bromination and photolithography to precisely tune the electron transport properties of single layer graphene (SLG). Through this …


Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Role Of Electronegativity In Environmentally Persistent Free Radicals (Epfrs) Formation On Zno, Syed Monjur Ahmed, Reuben Oumnov, Orhan Kizilkaya, Randall W. Hall, Philip T. Sprunger, Robert L. Cook Mar 2024

Role Of Electronegativity In Environmentally Persistent Free Radicals (Epfrs) Formation On Zno, Syed Monjur Ahmed, Reuben Oumnov, Orhan Kizilkaya, Randall W. Hall, Philip T. Sprunger, Robert L. Cook

Natural Sciences and Mathematics | Faculty Scholarship

Environmentally persistent free radicals (EPFRs), a group of emerging pollutants, have significantly longer lifetimes than typical free radicals. EPFRs form by the adsorption of organic precursors on a transition metal oxide (TMO) surface involving electron charge transfer between the organic and TMO. In this paper, dihalogenated benzenes were incorporated to study the role of electronegativity in the electron transfer process to obtain a fundamental knowledge of EPFR formation mechanism on ZnO. Upon chemisorption on ZnO nanoparticles at 250 °C, electron paramagnetic resonance (EPR) confirms the formation of oxygen adjacent carbon-centered organic free radicals with concentrations between 1016 and 1017 spins/g. …


Confirmation Of Anomalous-Heat Report, Steven B. Krivit, Melvin H. Miles Feb 2024

Confirmation Of Anomalous-Heat Report, Steven B. Krivit, Melvin H. Miles

Journal of Electrochemistry

This study identifies, for the first time, critical calculation errors made by Nathan Lewis and his co-authors, in their study presented on May 1, 1989, at the American Physical Society meeting in Baltimore, Maryland. Lewis et al. analysed calorimetrically measured heat results in nine experiments reported by Martin Fleischmann and his co-authors. According to the Lewis et al. analysis, each of the experiments, where calculated for no recombination, showed anomalous power losses. When we used the same raw data, our corrected calculations indicate that each experiment showed anomalous power gains. As such, these data suggest the possibility of a new, …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng Feb 2024

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


Measurements Of Rate Constant For Electrode Reactions, Lian-Huan Han, Jia-Yao Guo, Miao-Miao Cui Feb 2024

Measurements Of Rate Constant For Electrode Reactions, Lian-Huan Han, Jia-Yao Guo, Miao-Miao Cui

Journal of Electrochemistry

Standard electron-transfer rate constant is one of the intrinsic properties for an electrochemical reaction, which is significant in the study of electrode kinetics. It is a key criterion for one to clarify the mechanism and pathway of a specific electrochemical reaction, and to screening and design the electrocatalysts and battery materials. Herein, we will introduce the measuring methods of rate constant for electrode reactions, including polarization curve, rotating disk electrode, ultramicroelectrode, scanning electrochemical microscopy, electrochemical impedance spectroscopy, current step, potential step and cyclic voltammetry, etc., to provide a guide to investigate electrode kinetics for graduate students and researchers in the …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang Feb 2024

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …


Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave Feb 2024

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


On The Exact Helium Wave Function Expansion, Ii, An Exponential Modulated Form, Carl W. David Jan 2024

On The Exact Helium Wave Function Expansion, Ii, An Exponential Modulated Form, Carl W. David

Chemistry Education Materials

A 11S wave function’s expansion for 2 electron atoms and ions is proposed employing an appropriate exponential factor and Fock’s logarithmic terms. The leading coefficient’s are presented.


The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry Jan 2024

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma Jan 2024

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal Jan 2024

Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal

Journal of Electrochemistry

In this work, the long-term stability and degradation mechanism of a direct internal-reforming solid oxide fuel cell stack (IR-SOFC stack) using hydrogen-blended methane steam reforming were investigated. An overall degradation rate of 2.3%·kh–1 was found after the stack was operated for 3000 hours, indicating a good long-term stability. However, the voltages of the two cells in the stack were increased at the rates of 3.38 mV·kh–1 and 3.78 mV·kh–1, while the area specific resistances of the three metal interconnects in the stack were increased to 0.276 Ω·cm2, 0.254 Ω·cm2 and 0.249 Ω·cm2 …


Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang Jan 2024

Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang

Journal of Electrochemistry

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress …


Group 14 Metallocene Catalysts For Carbonyl Hydroboration And Cyanosilylation, Haley J. Robertson, Mallory N. Fujiwara, Allegra L. Liberman-Martin Jan 2024

Group 14 Metallocene Catalysts For Carbonyl Hydroboration And Cyanosilylation, Haley J. Robertson, Mallory N. Fujiwara, Allegra L. Liberman-Martin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A series of six Group 14 metallocene compounds (M = Ge, Sn, Pb) were studied as catalysts for carbonyl hydroboration and cyanosilylation reactions at room temperature. Both bis(pentamethylcyclopentadienyl) and tetramethyldisiloxa[3]metallocenophane compounds were compared. The tin and lead metallocenophanes exhibited the highest reactivity in hydroboration and cyanosilylation reactions. Hammett analysis of aldehyde hydroboration provided a ρ value of 0.73, suggesting a buildup of negative charge during the turnover-limiting step, consistent with the transition state for hydride transfer to the carbonyl center. NMR studies of Lewis acidity indicate that the Ge, Sn, and Pb tetramethyldisiloxa[3]metallocenophane compounds are weak Lewis acids.


Probing Charge Transport Mechanisms In 2d Semiconductive Metal Organic Framewoks, James Nyakuchena Jan 2024

Probing Charge Transport Mechanisms In 2d Semiconductive Metal Organic Framewoks, James Nyakuchena

Dissertations (1934 -)

Metal organic frameworks (MOFs) are a class of highly porous crystalline materials constructed from metal nodes connected by multitopic organic ligands. Due to their unique properties such as large surface area, tunable pore structure, and structural diversity, they have demonstrated potential in a wide array of applications including gas storage and separation, sensing, catalysis, and drug delivery. However, there are only a handful of MOFs reported that have electrical conductivity, which prevents their applications in photoelectronic and photocatalytic applications. This is because hard metals and redox inactive ligands with terminal hard linking bases such as carboxylates are often used in …


Assessing Interatomic Potentials For Molecular Dynamics Simulation Of Soybean Oil Pyrolysis, Tanner Garrett Rust Jan 2024

Assessing Interatomic Potentials For Molecular Dynamics Simulation Of Soybean Oil Pyrolysis, Tanner Garrett Rust

MSU Graduate Theses

The world today relies on hydrocarbon combustion for many reasons, including its high energy density that provides ease of transportation. However, hydrocarbons sourced from fossil fuels are not expected to last forever. Biodiesel, a renewable alternative, has many attractive benefits but comes with other downsides. Biodiesel can gel in cold environments and may leave residue in an engine. Pyrolysis of biodiesel has shown promise in addressing these common detriments. Inducing pyrolysis on biodiesel feedstock (commonly soybean oil in the USA) would be an attractive option presuming it continues to produce fossil fuel analogs similar to biodiesel pyrolysis. Herein, Langevin molecular …


Assessing The Performance Of Newly Developed Silica Nanoparticles Against Lead And Phosphate Ion Removal From Contaminated Solutions Using Adsorption Isotherm, Hasan Shamseddine, Nour Abi Aad, Rami Oweini, Ghassan Younes Dec 2023

Assessing The Performance Of Newly Developed Silica Nanoparticles Against Lead And Phosphate Ion Removal From Contaminated Solutions Using Adsorption Isotherm, Hasan Shamseddine, Nour Abi Aad, Rami Oweini, Ghassan Younes

BAU Journal - Science and Technology

This study investigates the removal of Lead and Phosphate ion from aqueous solution using new silica nanoparticles doped with europium (H1) which was characterized using Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Fourier-transform Infrared Spectroscopy (FTIR). The aim of this research is to develop a novel adsorbent material that can efficiently remove contaminated ions from wastewater or aqueous solutions. The adsorption of lead and phosphate ion onto the silica nanoparticles is investigated, and the efficiency of this removal is evaluated. Equilibrium data analysis reveals linear fitting with Langmuir isotherm with 24.76 mg/g Lead ion uptake, while for phosphate the …


Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan Dec 2023

Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan

Journal of Electrochemistry

Modification of electrode is vitally important for achieving high energy efficiency in aqueous quinone-based redox flow batteries (AQRFBs). The modification of graphite felt (GF) was carried out by means of urea hydrothermal reaction, and simultaneously, the effects of hydrothermal reaction time on the functional groups and surface structure of nitrogen-doped graphite felt were studied. The surface morphology and defect, element content and surface chemical state of the modified electrode were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) test, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the modified electrodes was evaluated by cyclic voltammetry, electrochemical impedance …


Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr Dec 2023

Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr

Journal of Electrochemistry

Solid oxide electrolysis cell (SOEC) is an efficient and clean energy conversion technology that can utilize electricity obtained from renewable resources, such as solar, wind, and geothermal energy to electrolyze water and produce hydrogen. The conversion of abundant intermittent energy to hydrogen energy would facilitate the efficient utilization of energy resources. SOEC is an all-ceramic electrochemical cell that operates in the intermediate to high temperature range of 500–750 ℃. Compared with traditional low temperature electrolysis technology (e.g., alkaline or proton exchange membrane cells operating at ~100 ℃), the high-temperature SOEC can increase the electrolysis efficiency from 80% to ~100%, providing …


Intelligent Control Based On Bp Artificial Neural Network For Electrochemical Nitrate Removal, Xin-Wan Zhang, Guang-Yuan Meng, Li-Qiang Fang, Ding-Ming Chang, Tong Li, Jin-Wen Hu, Peng Chen, Yong-Di Liu, Le-Hua Zhang Dec 2023

Intelligent Control Based On Bp Artificial Neural Network For Electrochemical Nitrate Removal, Xin-Wan Zhang, Guang-Yuan Meng, Li-Qiang Fang, Ding-Ming Chang, Tong Li, Jin-Wen Hu, Peng Chen, Yong-Di Liu, Le-Hua Zhang

Journal of Electrochemistry

Achieving effective control of parameters in the process of nitrate wastewater treatment is critical to electrochemical water treatment. The powerful nonlinear mapping ability, self-adaptation and self-learning ability of neural network technology can optimize the electrochemical processing. However, there are few researches in this direction. Hence, based on the test data of the electrochemical reduction of nitrate, an electrochemical prediction model was established by using the BP neural network algorithm. Considering the correlation of various parameters in the electrochemical process, the reaction time, initial nitrate nitrogen concentration, pH and current density were determined as the input layer of the BP neural …


An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao Dec 2023

An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao

Journal of Electrochemistry

The solid-electrolyte interphase (SEI) plays a key role in anodes for rechargeable lithium-based battery technologies. However, a thorough understanding in the mechanisms of SEI formation and evolution remains a major challenge, hindering the rapid development and wide applications of Li-based batteries. Here, we devise a borrowing surface-enhanced Raman scattering (SERS) activity strategy by utilizing a size optimized Ag nanosubstrate to in-situ monitor the formation and evolution of SEI, as well as its structure and chemistry in an ethylene carbonate-based electrolyte. To ensure a reliable in-situ SERS investigation, we designed a strict air-tight Raman cell with a three-electrode configuration. Based on …


Elucidating The Pd Active Sites Of Bimetallic Gold-Palladium Catalysts Using Chemisorption And Titration Techniques, Andrew T. Boucher Dec 2023

Elucidating The Pd Active Sites Of Bimetallic Gold-Palladium Catalysts Using Chemisorption And Titration Techniques, Andrew T. Boucher

Electronic Theses and Dissertations

A bimetallic nanoparticle catalyst combines two different metals on an oxide support, which can increase the selectivity towards useful products that may be too tightly bound to a monometallic catalyst. To explore the surface properties of such a system, we made a group of four PdAu bimetallic catalysts with varying gold mass loadings to compare with a parent Pd catalyst. The parent catalyst was synthesized using ion exchange, and gold was added to this parent Pd catalyst using incipient wetness impregnation (IWI) to create four bimetallic catalysts. All catalysts were characterized using H2 and CO chemisorption in tandem with …


Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari Dec 2023

Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari

Electronic Theses & Dissertations

Polyurethane (PU) is a versatile material that finds extensive use in various industries including bedding, construction, automotive, and packaging. Historically, this particular polymer relied significantly on petrochemical resources, a practice that was considered to have negative environmental impacts. The conventional method for preparing PU involves the use of isocyanate, which is a disadvantage due to its negative impact on the environment and human health. The resolution of this problem entails identifying an appropriate substitute for petroleum-derived products that minimize their impact on both the environment and human health. The researchers earlier utilized soybean oil, for the formulation of PUs in …