Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cosmology, Relativity, and Gravity

Characterization Of Extended Uncertainty Principle Black Holes, Juan Uribe, Jonas Mureika Apr 2023

Characterization Of Extended Uncertainty Principle Black Holes, Juan Uribe, Jonas Mureika

Honors Thesis

Black Holes are special objects as they are at the intersection of Quantum Mechanics and General Relativity. A central tenant of quantum mechanics is the Uncertainty Principle that dictates we cannot know with complete certainty position and momentum at the same time. The Extended Uncertainty Principle introduces a position-related uncertainty correction L_* to account for General Relativity. In a previous paper, a black hole metric associated with the Extended Uncertainty Principle was derived, by modifying the metric function of a Schwarzschild black hole. This metric introduces near-horizon structures that should produce observable effects, such as love numbers, gravitational wave echoes, …


Laplace's Equation In Fractional-Dimension Spaces, Kyle Schoener, Gabriele Varieschi May 2021

Laplace's Equation In Fractional-Dimension Spaces, Kyle Schoener, Gabriele Varieschi

Honors Thesis

The correct way to model gravity is a question in physics whose answer continues to elude our understanding. One major difficulty is the dark matter problem, which exists due to the mass discrepancy between predicted and measured values in our universe. One possible solution to this problem is Modified Newtonian Dynamics (MOND). MOND is an alternative gravity model that modifies Newtonian Dynamics with the hope to avoid the necessity of dark matter.

Dr. Varieschi has done work connecting MOND to Newtonian Fractional-Dimension Gravity—the application of fractional calculus and fractional mechanics to classical gravitation laws. In this formulation, we can consider …