Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley May 2024

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley

Dissertations & Theses (Open Access)

The Monte Carlo particle simulator TOPAS, the multiphysics solver COMSOL., and

several analytical radiation transport methods were employed to perform an in-depth proof-ofconcept

for a high dose rate, high precision converging beam small animal irradiation platform.

In the first aim of this work, a novel carbon nanotube-based compact X-ray tube optimized for

high output and high directionality was designed and characterized. In the second aim, an

optimization algorithm was developed to customize a collimator geometry for this unique Xray

source to simultaneously maximize the irradiator’s intensity and precision. Then, a full

converging beam irradiator apparatus was fit with a multitude …


Modeling And Analysis Of The Impact Of Vocational Education On The Unemployment Rate In Nigeria, Abayomi Ayoade, Opeyemi Odetunde, Bidemi Falodun Jun 2020

Modeling And Analysis Of The Impact Of Vocational Education On The Unemployment Rate In Nigeria, Abayomi Ayoade, Opeyemi Odetunde, Bidemi Falodun

Applications and Applied Mathematics: An International Journal (AAM)

Unemployment is a major determinant of a weak economy and a good measure of living standard in a country. Nigeria is faced with the problem of unemployment at present. By that, a mathematical model is formulated to investigate the effect of vocational education on the unemployment challenges in Nigeria. The model is tested for the basic requirements of a good mathematical model. The equilibrium analysis of the model is conducted and both the unemployment-free and the unemployment endemic equilibria are obtained. The threshold for the implementation success of the vocational education program is also derived following the approach of epidemic …


Understanding The Nature Of Nanoscale Wetting Through All-Atom Simulations, Oliver Evans Jan 2018

Understanding The Nature Of Nanoscale Wetting Through All-Atom Simulations, Oliver Evans

Williams Honors College, Honors Research Projects

The spreading behavior of spherical and cylindrical water droplets between 30Å and 100Å in radius on a sapphire surface is investigated using all-atom molecular dynamics simulations for durations on the order of tens of nanoseconds. A monolayer film develops rapidly and wets the surface, while the bulk of the droplet spreads on top of the monolayer, maintaining the shape of a spherical cap. Unlike previous simulations in the literature, the bulk radius is found to increase to a maximum value and receed as the monolayer continues to expand. Simple time and droplet size dependence is observed for monolayer radius and …


Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano Jun 2014

Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano

Master's Theses

Using an explicit integration method in physically based animations has many advantages including conceptual and computational simplicity, however, it re- quires small time steps to ensure low numerical instability. Simulations with large numbers of individually interacting components such as cloth, hair, and fluid models, are limited by the sections of particles most susceptible to error. This results in the need for smaller time steps than required for the majority of the system. These sections can be diverse and dynamic, quickly changing in size and location based on forces in the system. Identifying and handling these trou- blesome sections could allow …


Modelling The Role Of Cloud Density On The Removal Of Gaseous Pollutants And Particulate Matters From The Atmosphere, Shyam Sundar, Rajan K. Sharma, Ram Naresh Dec 2013

Modelling The Role Of Cloud Density On The Removal Of Gaseous Pollutants And Particulate Matters From The Atmosphere, Shyam Sundar, Rajan K. Sharma, Ram Naresh

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, a six dimensional nonlinear mathematical model is proposed to study the effect of the density of cloud droplets (formed due to the presence of vapors in the atmosphere) on the removal of pollutants, both gaseous and particulate, from the atmosphere. We assume that there exist six nonlinearly interacting phases in the atmosphere i.e. the vapor phase, the phase of cloud droplets, the phase of raindrops, the phase of gaseous pollutants, the phase of particulate matters and the phase of gaseous pollutants absorbed in raindrops. It is further assumed that the dynamics of the system undergo ecological type …


Modelling Β2ar Regulation, Sharat J. Vayttaden Dec 2011

Modelling Β2ar Regulation, Sharat J. Vayttaden

Dissertations & Theses (Open Access)

The β2 adrenergic receptor (β2AR) regulates smooth muscle relaxation in the vasculature and airways. Long- and Short-acting β-agonists (LABAs/SABAs) are widely used in treatment of chronic obstructive pulmonary disorder (COPD) and asthma. Despite their widespread clinical use we do not understand well the dominant β2AR regulatory pathways that are stimulated during therapy and bring about tachyphylaxis, which is the loss of drug effects. Thus, an understanding of how the β2AR responds to various β-agonists is crucial to their rational use. Towards that end we have developed deterministic models that explore the mechanism of drug- induced β2AR regulation. These mathematical models …


A Mathematical Model And Simulation Of Natural Circulation Loop Thermalhydraulics, Nihad E. Daidzic Mar 1992

A Mathematical Model And Simulation Of Natural Circulation Loop Thermalhydraulics, Nihad E. Daidzic

Aviation Department Publications

In this work, a simple, nonlinear, seventh-order mathematical model with lumped parameter analysis of the thermalhydraulic processes in a natural circulation steam boiler loop is presented. Digital simulation has been performed in order to predict open loop transients in severe accidental situations. Parts of the circulation loop such as the steam drum, downcomer, and riser were modelled separately on the basis of the integral balance equations. The two-phase flow in the steam drum and in the riser was modelled with the aid of a homogeneous-equilibrium, two-phase flow model. Special care was taken to ensure the stability of the numerical scheme, …