Open Access. Powered by Scholars. Published by Universities.®

Mathematical modeling

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 12 of 12

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

An Integrated Experimental And Modeling Approach To Design Rotating Algae Biofilm Reactors (Rabrs) Via Optimizing Algae Biofilm Productivity, Nutrient Recovery, And Energy Efficiency, Gerald Benjamin Jones May 2023

An Integrated Experimental And Modeling Approach To Design Rotating Algae Biofilm Reactors (Rabrs) Via Optimizing Algae Biofilm Productivity, Nutrient Recovery, And Energy Efficiency, Gerald Benjamin Jones

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Microalgae biofilms have been demonstrated to recover nutrients from wastewater and serve as biomass feedstock for bioproducts. However, there is a need to develop a platform to quantitatively describe microalgae biofilm production, which can provide guidance and insights for improving biomass areal productivity and nutrient uptake efficiency. This paper proposes a unified experimental and theoretical framework to investigate algae biofilm growth on a rotating algae biofilm reactor (RABR). The experimental laboratory setups are used to conduct controlled experiments on testing environmental and operational factors for RABRs. We propose a differential-integral equation-based mathematical model for microalgae biofilm cultivation guided by laboratory …


A New Sir Model With Mobility., Ciana Applegate Aug 2022

A New Sir Model With Mobility., Ciana Applegate

Electronic Theses and Dissertations

In this paper, a mobility-based SIR model is built to understand the spread of the pandemic. A traditional SIR model used in epidemiology describes the transition of particles among states, such as susceptible, infected, and recovered states. However, the traditional model has no movement of particles. There are many variations of SIR models when it comes to the factor of mobility, the majority of studies use mobility intensity or population density as a measure of mobility. In this paper, a new dynamical SIR model, including the spatial motion of three-type particles, is constructed and the long-time behavior of the first …


Modeling The Effect Of Human Behavior On Disease Transmission, Katie Yan Apr 2022

Modeling The Effect Of Human Behavior On Disease Transmission, Katie Yan

Mathematics and Statistics Theses

Many infectious disease models build upon the classical Susceptible-Infected-Recovered (SIR) model. The SIR model is a compartmental model that is used to model disease transmission throughout a population. The SIR model and its variations often focus on the transmission of disease but rarely include behavioral or informational components that explore how the perception of a disease influences transmission. In this thesis we propose a six compartment SIR model that segments the classical SIR model based on knowledge of information to explore the sharing of information and its ability to increase and decrease transmission. We designate these two model states as …


Mathematical Models Of Mosquito Populations, Hanna Reed Jan 2018

Mathematical Models Of Mosquito Populations, Hanna Reed

Honors Undergraduate Theses

The intent of this thesis is to develop ordinary differential equation models to better understand the mosquito population. We first develop a framework model, where we determine the condition under which a natural mosquito population can persist in the environment. Wolbachia is a bacterium which limits the replication of viruses inside the mosquito which it infects. As a result, infecting a mosquito population with Wolbachia can decrease the transmission of viral mosquito-borne diseases, such as dengue. We develop another ODE model to investigate the invasion of Wolbachia in a mosquito population. In a biologically feasible situation, we determine three coexisting …


Modeling Public Opinion, Arden Baxter Jan 2018

Modeling Public Opinion, Arden Baxter

Honors Program Theses

The population dynamics of public opinion have many similarities to those of epidemics. For example, models of epidemics and public opinion share characteristics like contact rates, incubation times, and recruitment rates. Generally, epidemic dynamics have been presented through epidemiological models. In this paper we adapt an epidemiological model to demonstrate the population dynamics of public opinion given two opposing viewpoints. We find equilibrium solutions for various cases of the system and examine the local stability. Overall, our system provides sociological insight on the spread and transition of a public opinion.


On Honey Bee Colony Dynamics And Disease Transmission, Matthew I. Betti Aug 2017

On Honey Bee Colony Dynamics And Disease Transmission, Matthew I. Betti

Electronic Thesis and Dissertation Repository

The work herein falls under the umbrella of mathematical modeling of disease transmission. The majority of this document focuses on the extent to which infection undermines the strength of a honey bee colony. These studies extend from simple mass-action ordinary differential equations models, to continuous age-structured partial differential equation models and finally a detailed agent-based model which accounts for vector transmission of infection between bees as well as a host of other influences and stressors on honey bee colony dynamics. These models offer a series of predictions relevant to the fate of honey bee colonies in the presence of disease …


Comparison Of The Regulatory Dynamics Of Related Small Gene Regulatory Networks That Control The Response To Cold Shock In Saccharomyces Cerevisiae, Natalie Williams May 2017

Comparison Of The Regulatory Dynamics Of Related Small Gene Regulatory Networks That Control The Response To Cold Shock In Saccharomyces Cerevisiae, Natalie Williams

Honors Thesis

The Dahlquist Lab investigates the global, transcriptional response of Sacchromyces cerevisiae, baker’s yeast, to the environmental stress of cold shock, using DNA microarrays for the wild type strain and strains deleted for a particular regulatory transcription factor. Gene regulatory networks (GRNs) consist of transcription factors (TF), genes, and the regulatory connections between them that control the resulting mRNA and protein expression levels. We use mathematical modeling to determine the dynamics of the GRN controlling the cold shock response to determine the relative influence of each transcription factor in the network. A family of GRNs has been derived from the …


Mathematical Equations And System Identification Models For A Portable Pneumatic Bladder System Designed To Reduce Human Exposure To Whole Body Shock And Vibration, Ezzat Aziz Ayyad Aug 2014

Mathematical Equations And System Identification Models For A Portable Pneumatic Bladder System Designed To Reduce Human Exposure To Whole Body Shock And Vibration, Ezzat Aziz Ayyad

UNLV Theses, Dissertations, Professional Papers, and Capstones

A mathematical representation is sought to model the behavior of a portable pneumatic foam bladder designed to mitigate the effects of human exposure to shock and whole body random vibration. Fluid Dynamics principles are used to derive the analytic differential equations used for the physical equations Model. Additionally, combination of Wiener and Hammerstein block oriented representation techniques have been selected to create system identification (SID) block oriented models. A number of algorithms have been iterated to obtain numerical solutions for the system of equations which was found to be coupled and non-linear, with no analytic closed form solution. The purpose …


Mathematical Modeling Of T Cell Clustering Following Malaria Infection In Mice, Reka Katalin Kelemen May 2014

Mathematical Modeling Of T Cell Clustering Following Malaria Infection In Mice, Reka Katalin Kelemen

Masters Theses

Malaria is the result of the immune system's unsuccessful clearance of hepatocytes (liver cells) infected by the eukaryotic pathogen of the Plasmodium genus. It has been shown that CD8 T cells are required and sufficient for protective immunity against malaria in mice [29, 36], but the mechanisms by which they find and eliminate infected hepatocytes are not known yet. Recently we reported the formation of CD8 T cell clusters consisting of up to 25 cells around infected cells [8]. Our mathematical modeling and data analysis revealed that malaria-specific T cells likely recruit each other and also non-malaria-specific T cells to …


Study Of Virus Dynamics By Mathematical Models, Xiulan Lai Apr 2014

Study Of Virus Dynamics By Mathematical Models, Xiulan Lai

Electronic Thesis and Dissertation Repository

This thesis studies virus dynamics within host by mathematical models, and topics discussed include viral release strategies, viral spreading mechanism, and interaction of virus with the immune system.

Firstly, we propose a delay differential equation model with distributed delay to investigate the evolutionary competition between budding and lytic viral release strategies. We find that when antibody is not established, the dynamics of competition depends on the respective basic reproduction numbers of the two viruses. If the basic reproductive ratio of budding virus is greater than that of lytic virus and one, budding virus can survive. When antibody is established for …


Optimal Therapy Regimens For Treatment-Resistant Mutations Of Hiv, Weiqing Gu, Helen Moore Jan 2006

Optimal Therapy Regimens For Treatment-Resistant Mutations Of Hiv, Weiqing Gu, Helen Moore

All HMC Faculty Publications and Research

In this paper, we use control theory to determine optimal treatment regimens for HIV patients, taking into account treatment-resistant mutations of the virus. We perform optimal control analysis on a model developed previously for the dynamics of HIV with strains of various resistance to treatment (Moore and Gu, 2005). This model incorporates three types of resistance to treatments: strains that are not responsive to protease inhibitors, strains not responsive to reverse transcriptase inhibitors, and strains not responsive to either of these treatments. We solve for the optimal treatment regimens analytically and numerically. We find parameter regimes for which optimal dosing …


A Mathematical Model For Treatment-Resistant Mutations Of Hiv, Helen Moore, Weiqing Gu Apr 2005

A Mathematical Model For Treatment-Resistant Mutations Of Hiv, Helen Moore, Weiqing Gu

All HMC Faculty Publications and Research

In this paper, we propose and analyze a mathematical model, in the form of a system of ordinary differential equations, governing mutated strains of human immunodeficiency virus (HIV) and their interactions with the immune system and treatments. Our model incorporates two types of resistant mutations: strains that are not responsive to protease inhibitors, and strains that are not responsive to reverse transcriptase inhibitors. It also includes strains that do not have either of these two types of resistance (wild-type virus) and strains that have both types. We perform our analysis by changing the system of ordinary differential equations (ODEs) to …