Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

Population Dynamics And Bifurcations In Predator-Prey Systems With Allee Effect, Yanni Zeng Dec 2023

Population Dynamics And Bifurcations In Predator-Prey Systems With Allee Effect, Yanni Zeng

Electronic Thesis and Dissertation Repository

This thesis investigates a series of nonlinear predator-prey systems incorporating the Allee effect using differential equations. The main goal is to determine how the Allee effect affects population dynamics. The stability and bifurcations of the systems are studied with a hierarchical parametric analysis, providing insights into the behavioral changes of the population within the systems. In particular, we focus on the study of the number and distribution of limit cycles (oscillating solutions) and the existence of multiple stable states, which cause complex dynamical behaviors. Moreover, including the prey refuge, we examine how our method benefits the low-density animals and affects …


(Si10-057) Effect Of Time-Delay On An Sir Type Model For Infectious Diseases With Saturated Treatment, R. P. Gupta, Arun Kumar Oct 2022

(Si10-057) Effect Of Time-Delay On An Sir Type Model For Infectious Diseases With Saturated Treatment, R. P. Gupta, Arun Kumar

Applications and Applied Mathematics: An International Journal (AAM)

This study presents the complex dynamics of an SIR epidemic model incorporating a constant time-delay in incidence rate with saturated type of treatment rate. The system is studied to observe the effect of time lag in the asymptotic stability of endemic equilibrium states. We also establish global asymptotic stability of both disease-free and endemic equilibrium states by Lyapunov direct method with the help of suitable Lyapunov functionals. The existences of periodic solutions are ensured for the suitable choice of delay parameter. Finally, we perform numerical simulations supporting the analytical findings as well as to observe the effect of time-delay. The …


Viral Dynamics Of Delayed Ctl-Inclusive Hiv-1 Infection Model With Both Virus-To-Cell And Cell-To-Cell Transmissions, M. L. Mann Manyombe, J. Mbang, L. Nkague Nkamba, D. F. Nkoa Onana Jun 2020

Viral Dynamics Of Delayed Ctl-Inclusive Hiv-1 Infection Model With Both Virus-To-Cell And Cell-To-Cell Transmissions, M. L. Mann Manyombe, J. Mbang, L. Nkague Nkamba, D. F. Nkoa Onana

Applications and Applied Mathematics: An International Journal (AAM)

We consider a mathematical model that describes a viral infection of HIV-1 with both virus-tocell and cell-to-cell transmission, CTL response immune and four distributed delays, describing intracellular delays and immune response delay. One of the main features of the model is that it includes a constant production rate of CTLs export from thymus, and an immune response delay. We derive the basic reproduction number and show that if the basic reproduction number is less than one, then the infection free equilibrium is globally asymptotically stable; whereas, if the basic reproduction number is greater than one, then there exist a chronic …


Understanding The Fundamental Molecular Mechanism Of Osteogenic Differentiation From Mesenchymal Stem Cells, Imelda Trejo, Hristo V. Kojouharov Dec 2019

Understanding The Fundamental Molecular Mechanism Of Osteogenic Differentiation From Mesenchymal Stem Cells, Imelda Trejo, Hristo V. Kojouharov

Applications and Applied Mathematics: An International Journal (AAM)

A mathematical model is presented to study the regulatory effects of growth factors in osteoblastogenesis. The model incorporates the interactions among mesenchymal stem cells, osteoblasts, and growth factors. The resulting system of nonlinear ordinary differential equations is studied analytically and numerically. Mathematical conditions for successful osteogenic differentiation and optimal osteoblasts population are formulated, which can be used in practice to accelerate bone formation. Numerical simulations are also presented to support the theoretical results and to explore different medical interventions to enhance osteoblastogenesis.


Bifurcation Analysis For Prey-Predator Model With Holling Type Iii Functional Response Incorporating Prey Refuge, Lazaar Oussama, Mustapha Serhani Dec 2019

Bifurcation Analysis For Prey-Predator Model With Holling Type Iii Functional Response Incorporating Prey Refuge, Lazaar Oussama, Mustapha Serhani

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we carried out the bifurcation analysis for a Lotka-Volterra prey-predator model with Holling type III functional response incorporating prey refuge protecting a constant proportion of the preys. We study the local bifurcation considering the refuge constant as a parameter. From the center manifold equation, we establish a transcritical bifurcation for the boundary equilibrium. In addition, we prove the occurrence of Hopf bifurcation for the homogeneous equilibrium. Moreover, we give the radius and period of the unique limit cycle for our system


Bifurcation Analysis Of Two Biological Systems: A Tritrophic Food Chain Model And An Oscillating Networks Model, Xiangyu Wang Oct 2018

Bifurcation Analysis Of Two Biological Systems: A Tritrophic Food Chain Model And An Oscillating Networks Model, Xiangyu Wang

Electronic Thesis and Dissertation Repository

In this thesis, we apply bifurcation theory to study two biological systems. Main attention is focused on complex dynamical behaviors such as stability and bifurcation of limit cycles. Hopf bifurcation is particularly considered to show bistable or even tristable phenomenon which may occur in biological systems. Recurrence is also investigated to show that such complex behavior is common in biological systems.

First we consider a tritrophic food chain model with Holling functional response types III and IV for the predator and superpredator, respectively. Main attention is focused on the sta- bility and bifurcation of equilibria when the prey has a …


On The Existence Of Bogdanov-Takens Bifurcations, Zachary Deskin Dec 2017

On The Existence Of Bogdanov-Takens Bifurcations, Zachary Deskin

MSU Graduate Theses

In bifurcation theory, there is a theorem (called Sotomayor's Theorem) which proves the existence of one of three possible bifurcations of a given system, provided that certain conditions of the system are satisfied. It turns out that there is a "similar" theorem for proving the existence of what is referred to as a Bogdanov-Takens bifurcation. The author is only aware of one reference that has the proof of this theorem. However, most of the details were left out of the proof. The contribution of this thesis is to provide the details of the proof on the existence of Bogdanov-Takens bifurcations.


Dynamics Of An Sir Model With Nonlinear Incidence And Treatment Rate, Balram Dubey, Preeti Dubey, Uma S. Dubey Dec 2015

Dynamics Of An Sir Model With Nonlinear Incidence And Treatment Rate, Balram Dubey, Preeti Dubey, Uma S. Dubey

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, global dynamics of an SIR model are investigated in which the incidence rate is being considered as Beddington-DeAngelis type and the treatment rate as Holling type II (saturated). Analytical study of the model shows that the model has two equilibrium points (diseasefree equilibrium (DFE) and endemic equilibrium (EE)). The disease-free equilibrium (DFE) is locally asymptotically stable when reproduction number is less than one. Some conditions on the model parameters are obtained to show the existence as well as nonexistence of limit cycle. Some sufficient conditions for global stability of the endemic equilibrium using Lyapunov function are obtained. …


Controllability Of An Eco-Epidemiological System With Disease Transmission Delay: A Theoretical Study, Samadyuti Haldar, Kunal Chakraborty, T. K. Kar Jun 2015

Controllability Of An Eco-Epidemiological System With Disease Transmission Delay: A Theoretical Study, Samadyuti Haldar, Kunal Chakraborty, T. K. Kar

Applications and Applied Mathematics: An International Journal (AAM)

This paper deals with the qualitative analysis of a disease transmission delay induced prey preda-tor system in which disease spreads among the predator species only. The growth of the preda-tors’ susceptible and infected subpopulations is assumed as modified Leslie–Gower type. Suffi-cient conditions for the persistence, permanence, existence and stability of equilibrium points are obtained. Global asymptotic stability of the system is investigated around the coexisting equilib-rium using a geometric approach. The existence of Hopf bifurcation phenomenon is also exam-ined with respect to some important parameters of the system. The criterion for disease a trans-mission delay the induced Hopf bifurcation phenomenon …


Bifurcations And Stability In Models Of Infectious Diseases, Bernard S. Chan Dec 2011

Bifurcations And Stability In Models Of Infectious Diseases, Bernard S. Chan

Electronic Thesis and Dissertation Repository

This work is concerned with bifurcation and stability in models related to various aspects of infections diseases.

First, we study the dynamics of a mathematical model on primary and secondary cytotoxic T-lymphocyte responses to viral infections by Wodarz et al. This model has three equilibria and the stability criteria of them are discussed. We analytically show that periodic solutions may arise from the third equilibrium via Hopf bifurcation. Numerical simulations of the model agree with the theoretical results. These dynamical behaviours occur within biologically realistic parameter range.

After studying the single-strain model, we analyze the bifurcation dynamics of an …